Skip to Content
MilliporeSigma
All Photos(1)

Documents

EHU085491

Sigma-Aldrich

MISSION® esiRNA

targeting human FGFR4

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41105324
NACRES:
NA.51

description

Powered by Eupheria Biotech

product line

MISSION®

form

lyophilized powder

esiRNA cDNA target sequence

CAAAGACAACGCCTCTGACAAGGACCTGGCCGACCTGGTCTCGGAGATGGAGGTGATGAAGCTGATCGGCCGACACAAGAACATCATCAACCTGCTTGGTGTCTGCACCCAGGAAGGGCCCCTGTACGTGATCGTGGAGTGCGCCGCCAAGGGAAACCTGCGGGAGTTCCTGCGGGCCCGGCGCCCCCCAGGCCCCGACCTCAGCCCCGACGGTCCTCGGAGCAGTGAGGGGCCGCTCTCCTTCCCAGTCCTGGTCTCCTGCGCCTACCAGGTGGCCCGAGGCATGCAGTATCTGGAGTCCCGGAAGTGTATCCACCGGGACCTGGCTGCCCGCAATGTGCTGGTGACTGAGGACAATGTGATGAAGATTGCTGACTTTGGGCTGGCCCGCGGCGTCCACCACATTGACTACTATAAGAAAACCAGCAACGGC

Ensembl | human accession no.

NCBI accession no.

shipped in

ambient

storage temp.

−20°C

Gene Information

General description

MISSION® esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.

For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.

Legal Information

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class

10 - Combustible liquids

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Qiuchen Cai et al.
Life sciences, 248, 117465-117465 (2020-02-28)
Severe peripheral nerve injury leads to skeletal muscle atrophy and impaired limb function that is not sufficiently improved by existing treatments. Fibroblast growth factor 6 (FGF6) is involved in tissue regeneration and is dysregulated in denervated rat muscles. However, the
Susagna Padrissa-Altés et al.
Gut, 64(9), 1444-1453 (2014-11-25)
Fibroblast growth factors (Fgfs) are key orchestrators of development, and a role of Fgfs in tissue repair is emerging. Here we studied the consequences of inducible loss of Fgf receptor (Fgfr) 4, the major Fgf receptor (Fgfr) on hepatocytes, alone
Huan Lin et al.
Frontiers in pharmacology, 10, 1515-1515 (2020-01-11)
Endocrine fibroblast growth factor (FGF) 19 has been shown to be capable of maintaining bile acid (BA) homeostasis and thus hold promise to be a potential therapeutic agent for cholestasis liver disease. However, whether paracrine FGFs possess this BA regulatory
Jing Yang et al.
Cell cycle (Georgetown, Tex.), 14(20), 3318-3330 (2015-09-18)
Fibroblast growth factors (FGF1, FGF2 and FGF4) and fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3 and FGFR4) have been reported to be expressed in preimplantation embryos and be required for their development. However, the functions of these molecules in trophectoderm
Shuxin Han et al.
Nature communications, 6, 7231-7231 (2015-06-05)
Circadian control of nutrient availability is critical to efficiently meet the energetic demands of an organism. Production of bile acids (BAs), which facilitate digestion and absorption of nutrients, is a major regulator of this process. Here we identify a KLF15-Fgf15

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service