Vitamin K2 2,3-epoxide is a vitamin K metabolite occurring in the ubiquinone, secondary metabolite and other terpenoid-quinone biosynthetic pathways. Vitamin K is needed for the post-translational modification of certain proteins, mostly required for blood coagulation. Within the cell, vitamin K undergoes electron reduction to a reduced form of vitamin K by the enzyme vitamin K epoxide reductase. Another enzyme then oxidizes vitamin K hydroquinone to allow carboxylation of glutamate to gamma-carboxyglutamate (Gla); this enzyme is called the gamma-glutamyl carboxylase or the vitamin K-dependent carboxylase. The carboxylation reaction will only proceed if the carboxylase enzyme is able to oxidize vitamin K hydroquinone to vitamin K epoxide at the same time; the carboxylation and epoxidation reactions are said to be coupled reactions. Vitamin K epoxide is then re-converted to vitamin K by the vitamin K epoxide reductase. These two enzymes comprise the so-called vitamin K cycle. One of the reasons why vitamin K is rarely deficient in a human diet is because vitamin K is continually recycled in our cells. Vitamin K 2,3-epoxide is the substrate for vitamin K 2,3-epoxide reductase (VKOR) complex. Significantly increased level of serum vitamin K epoxide has been found in patients with familial multiple coagulation factor deficiency.
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 12(8), 680-687 (2001-10-03)
It has been reported that vitamin K2 (menaquinone-4) promoted 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-induced mineralization and enhanced gamma-carboxyglutamic acid (Gla)-containing osteocalcin accumulation in cultured human osteoblasts. In the present study, we investigated whether menaquinone-4 (MK-4) was metabolized in human osteoblasts to act
Vitamin K2 (VK2, menaquinone) is known to have anticancer activity in vitro and in vivo. Although its effect is thought to be mediated, at least in part, by the induction of apoptosis, the underlying molecular mechanism remains elusive. Here, we
The Journal of biological chemistry, 286(17), 15085-15094 (2011-03-04)
Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1), expressed in HEK 293T cells and localized exclusively to membranes of the endoplasmic reticulum, was found to support both vitamin K 2,3-epoxide reductase (VKOR) and vitamin K reductase enzymatic activities.
Familial multiple coagulation factor deficiency (FMFD) of factors II, VII, IX, X, protein C, and protein S is a very rare bleeding disorder with autosomal recessive inheritance. The phenotypic presentation is variable with respect to the residual activities of the
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.