Claycomb Medium, named after Dr. William Claycomb who established the HL-1 cell line, is specifically designed for the growth of murine cardiomyocytes. HL-1 is the first cell line established that can maintain the differentiated cardiomyocyte phenotype and contractile activity in vitro. The HL-1 cell line can be used for the study of cardiac cell hypertrophy that follows myocardial infarction, the testing of novel cardiac therapeutic drugs and treatments, the production of high levels of cardiac proteins and the study of mature cardiomyocyte specific genes. Claycomb Medium, when supplemented with 100 μM norepinephrin, 10% fetal bovine serum (FBS) and 4 mM L-glutamine, will maintain the HL-1 cell line and the mature cardiomycyte behavior. While observing the HL-1 cells under light microscopy, individual and groups of cells can be observed contracting, becoming more frequent as the cardiomyocytes reach confluency.
The human ether-a-go-go-related gene KCNH2 encodes the voltage-gated potassium channel underlying IKr, a current critical for the repolarization phase of the cardiac action potential. Mutations in KCNH2 that cause a reduction of the repolarizing current can result in cardiac arrhythmias
Genome-wide association studies have implicated common genomic variants in the gene desert upstream of TBX3 in cardiac conduction velocity. Whether these noncoding variants affect expression of TBX3 or neighboring genes and how they affect cardiac conduction is not understood. Here
Light-chain amyloidosis (AL) is a devastating protein-misfolding disease characterized by abnormal proliferation of plasma cells in the bone marrow that secrete monoclonal immunoglobulin light chains that misfold and form amyloid fibrils, thus causing organ failure and death. Numerous reports on
Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied
The Journal of biological chemistry, 293(52), 19974-19981 (2018-11-23)
Human babesiosis is an emerging tick-borne disease caused by apicomplexan parasites of the genus Babesia Clinical cases caused by Babesia duncani have been associated with high parasite burden, severe pathology, and death. In both mice and hamsters, the parasite causes
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.