Recent publications have shown that the anodic reaction between FeS and Hg can be used for electrochemical detection of colloidal and particulate FeS in natural waters. Anodic waves that were recorded around -0.45 V (vs Ag/AgCl) in model solutions correspond
Journal of hazardous materials, 186(1), 451-457 (2010-11-30)
Higher concentrations (127, 253 μM) of Se(IV) at pH 8 were completely removed by 0.5 g/L FeS within 120 min. Removal of Se(VI) by FeS at pH 8 was less extensive than removal of Se(IV). Only 10% of the Se(VI)
We report a facile approach to prepare carbon-coated troilite FeS (C@FeS) nanosheets via surfactant-assisted solution-based synthesis. 1-Dodecanethiol is used as both the sulfur source and the surfactant, which may form different-shaped micelles to direct the growth of nanostructures. Under appropriate
Multicomponent nanoparticles containing two or more different types of functionalities show unique physical and chemical properties, leading to significantly enhanced performance. In this study, we have developed a new one-pot method to prepare Fe/FeS nanoparticles using dithionite at room temperature.
The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO(3)-Nl(-1)) in drinking water. The use of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.