Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

752649

Sigma-Aldrich

Indium oxide

sputtering target, diam. × thickness 3.00 in. × 0.125 in., 99.99% trace metals basis

Synonym(s):

Indium(III) oxide, Diindium trioxide, Indium sesquioxide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
In2O3
CAS Number:
Molecular Weight:
277.63
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:

vapor pressure

<0.01 mmHg ( 25 °C)

assay

99.99% trace metals basis

form

solid

reaction suitability

core: indium

diam. × thickness

3.00 in. × 0.125 in.

density

7.18 g/mL at 25 °C (lit.)

SMILES string

O=[In]O[In]=O

InChI

1S/2In.3O

InChI key

SHTGRZNPWBITMM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our Documents section.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Wickersham, C.E.; Greene, J.E.
Physica Status Solidi (A): Applied Research, 47, 329-329 (1978)
Manifacier, J.C.
Thin Solid Films, 90, 29-29 (1982)
Jiefu Yin et al.
Inorganic chemistry, 51(12), 6529-6536 (2012-06-06)
We report here for the first time the hollow, metastable, single-crystal, rhombohedral In(2)O(3) (rh-In(2)O(3)) nanocrystals synthesized by annealing solvothermally prepared InOOH solid nanocrystals under ambient pressure at 400 °C, through a mechanism of the Kirkendall effect, in which pore formation
Di Chen et al.
Nanoscale, 4(10), 3001-3012 (2012-04-13)
With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive
Huimeng Wu et al.
Journal of the American Chemical Society, 133(36), 14327-14337 (2011-08-11)
This Article reports a mechanistic study on the formation of colloidal UO(2)/In(2)O(3) and FePt/In(2)O(3) heterodimer nanocrystals. These dimer nanocrystals were synthesized via the growth of In(2)O(3) as the epitaxial material onto the seed nanocrystals of UO(2) or FePt. The resulting

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service