Journal of the American Chemical Society, 125(49), 15114-15127 (2003-12-05)
Lithium diisopropylamide-mediated lithiations of N-alkyl ketimines derived from cyclohexanones reveal that simple substitutions on the N-alkyl side chain and the 2-position of the cyclohexyl moiety afford a 60,000-fold range of rates. Detailed rate studies implicate monosolvated monomers at the rate-limiting
Journal of the American Chemical Society, 132(44), 15610-15623 (2010-10-22)
Lithium diisopropylamide (LDA) in tetrahydrofuran at -78 °C undergoes 1,4-addition to an unsaturated ester via a rate-limiting deaggregation of LDA dimer followed by a post-rate-limiting reaction with the substrate. Muted autocatalysis is traced to a lithium enolate-mediated deaggregation of the
Journal of the American Chemical Society, 130(52), 18008-18017 (2008-12-05)
Ortholithiation of 3-fluorophenyl-N,N-diisopropyl carbamate by lithium diisopropylamide (LDA) in THF at -78 degrees C affords unusual rate behavior including linear decays of the carbamate, delayed formation of LDA-aryllithium mixed dimers, and evidence of autocatalysis. A mechanistic model in conjunction with
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.