High concentrations of ethylmalonic acid (EMA) are found in tissues and biological fluids of patients affected by ethylmalonic encephalopathy (EE), as well as by deficiency of short-chain acyl-CoA dehydrogenase (SCAD) activity and other illnesses characterized by developmental delay and other
Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inborn error, biochemically characterized by increased plasma butyrylcarnitine (C4-C) concentration and increased ethylmalonic acid (EMA) excretion and caused by rare mutations and/or common gene variants in the SCAD encoding gene. Although its clinical
Journal of inherited metabolic disease, 33(3), 211-222 (2010-05-06)
Mitochondrial dysfunction and oxidative stress are central to the molecular basis of several human diseases associated with neuromuscular disabilities. We hypothesize that mitochondrial dysfunction also contributes to the neuromuscular symptoms observed in patients with ethylmalonic aciduria and homozygosity for ACADS
Our aim was to compare urinary ethylmalonic acid (EMA) levels in subjects who had no apparent clinical reason to have increased levels of this substance but were suffering from non-specific CNS impairment, and healthy controls. Urinary EMA concentrations detected by
Ethylmalonic encephalopathy is a rare metabolic disease presenting in infancy with developmental delay, acrocyanosis, petechiae, chronic diarrhea and early death. The biochemical characteristics of this autosomal recessive disease are urinary organic acid abnormalities. Recently it has been found to be
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.