Skip to Content
Merck
All Photos(1)

Key Documents

910767

Sigma-Aldrich

Titanium aluminium carbide 312

MAX Phase, ≥90%, ≤100 μm particle size

Synonym(s):

MAX Phase 312, Ti3AlC2

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ti3AlC2
CAS Number:
UNSPSC Code:
12352103
NACRES:
NA.23

Assay

≥90%

form

powder

color

dark gray

particle size

≤100 μm

Looking for similar products? Visit Product Comparison Guide

Application

MAX phases are a family of ternary carbides and nitrides that share a similar layered hexagonal crystal structure. They are so called because of their chemical formula: M(n+1)AXn —where n = 1, 2, or 3, where M is an early transition metal, A is an element from the IIIA or IVA groups, and X is carbon and/or nitrogen class of materials. MAX phases combine attractive properties of both ceramics and metals, and has been suggested for potential applications in nuclear reactor. The specific activities of Ti3AlC2 and Ti2AlC were found to be similar to SiC, and are three orders of magnitude less than Alloy 617 after 10–60 years decay for all three activation times in both the fast and thermal spectra.

MAX phases are important precursors for synthesizing MXene, a highly conductive 2-dimentional nanomaterial. MXenes are produced by selective etching of the A element from the MAX phases. It combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. Ti3AlC2 MAX phase is one of the most used MAX phase for MXene (Ti3C2Tx).

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

MAX phases: bridging the gap between metals and ceramics
Radovic M, et al.
American Ceramic Society Bulletin, 92(3), 20-27 (2013)
Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)
Alhabeb M, et al.
Chemistry of Materials, 29(18), 7633-7644 (2017)
MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis
Hoffman E N, et al.
Nuclear Engineering and Design, 244, 17-24 (2012)
Michael Naguib et al.
Advanced materials (Deerfield Beach, Fla.), 26(7), 992-1005 (2013-12-21)
Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by

Articles

Optimizing the synthesis of high-quality 2D MXene flakes for 3D ink printing is essential to such technological developments as printable and flexible electronics.

Discover how MXenes' superior conductivity, strength, and stability are revolutionizing energy. Explore their potential for next-gen batteries and hydrogen evolution.

Discover how MXenes' superior conductivity, strength, and stability are revolutionizing energy. Explore their potential for next-gen batteries and hydrogen evolution.

Advanced technologies for energy conversion and storage aim to improve performance and reduce environmental impact.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service