Skip to Content
Merck
All Photos(2)

Documents

317624

Sigma-Aldrich

Isophorone diisocyanate

98%, mixture of isomers

Synonym(s):

5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
OCNC6H7(CH3)3CH2NCO
Molecular Weight:
222.28
Beilstein:
2726467
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

Assay

98%

form

liquid

refractive index

n20/D 1.484 (lit.)

bp

158-159 °C/15 mmHg (lit.)

density

1.049 g/mL at 25 °C (lit.)

SMILES string

CC1(C)CC(CC(C)(CN=C=O)C1)N=C=O

InChI

1S/C12H18N2O2/c1-11(2)4-10(14-9-16)5-12(3,6-11)7-13-8-15/h10H,4-7H2,1-3H3

InChI key

NIMLQBUJDJZYEJ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Isophorone diisocyanate (IPDI) is an aliphatic diisocyanate that is majorly used as a curing agent by forming −NCO linkages. It is mainly utilized in the preparation of various polyurethane products for a variety of high-performance coatings for automotive and industrial applications, medical devices, upholstery, insulation, and packaging applications, and in the manufacture of adhesives, sealants, and binders. It provides UV resistant films due to the presence of the aliphatic ring.

Application

IPDI is primarily used as a diisocyanate monomer in the production of polyurethane resins and elastomers. IPDI is highly reactive and can be used to produce polymer products with varying properties, ranging from rigid to flexible. Some of the primary uses of IPDI in polymer industries include:
  • Production of polyurethane coatings for automotive and industrial applications.
  • Synthesis of polyurethane elastomers used in medical devices and sports equipment.
  • Production of polyurethane foams used in upholstery, insulation, and packaging applications.
  • Use in the manufacture of adhesives, sealants, and binders.
  • In the synthesis of bridged silsesquioxane(BSQ) by sol-gel polycondensation with 3-aminopropyltriethoxysilane. The polymer of BSQ can be used to prepare the moisture-resistant film for UV filters.
  • As a healing agent in the preparation of polyurethane microcapsules by interfacial polymerization.
  • As a monomer in the synthesis of highly monodispersed polyurea microspheres via precipitation polymerization.

Signal Word

Danger

Hazard Classifications

Acute Tox. 1 Inhalation - Aquatic Chronic 2 - Eye Irrit. 2 - Resp. Sens. 1 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 2

Flash Point(F)

325.4 °F - closed cup

Flash Point(C)

163 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Facile synthesis of bio-sourced polyurethane-fluorosilane modified TiO 2 hybrid coatings for high-performance self cleaning application
Yesudass SA, et al.
Journal of Polymer Research, 25(2), 34-34 (2018)
Annemie Houben et al.
Macromolecular bioscience, 16(12), 1883-1894 (2016-10-28)
In the present work, a photopolymerized urethane-based poly(ethylene glycol) hydrogel is applied as a porous scaffold material using indirect solid freeform fabrication (SFF). This approach combines the benefits of SFF with a large freedom in material selection and applicable concentration
Ash M and Ash I
Handbook of Green Chemicals null
Alger MSM
Polymer Science Dctionary null
Tao Bai et al.
Nanomaterials (Basel, Switzerland), 10(1) (2020-01-17)
In this work, the effect of modified graphene oxide and polytetrafluoroethylene (PTFE) on the tribological and anticorrosion properties of waterborne polyurethane (WPU) was studied. The modified graphene oxide (MGO) was obtained by the surface functionalization modification of graphene oxide (GO)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service