Skip to Content
Merck
All Photos(1)

Key Documents

940348

Dichloro(p-cymene)ruthenium(II) dimer ChemBeads

new

Synonym(s):

(p-Cymene)ruthenium(II) chloride dimer ChemBeads, Benzene-1-methyl-4-(1-methylethyl)-ruthenium complex ChemBeads

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C20H28Cl4Ru2
CAS Number:
Molecular Weight:
612.39
UNSPSC Code:
12352100

form

solid

Quality Level

composition

, 4-6 wt. % (loading)

reaction suitability

reagent type: catalyst

SMILES string

[Cl-][Ru+2]123456([Cl-][Ru+2]789%10%11([Cl-])([Cl-]1)[CH]=%12[CH]%11=C%10(C(C)C)[CH]9=[CH]8C%127C)[CH]=%13[CH]6=C5(C(C)C)[CH]4=[CH]3C%132C

InChI

InChI=1S/2C10H14.4ClH.2Ru/c2*1-8(2)10-6-4-9(3)5-7-10;;;;;;/h2*4-8H,1-3H3;4*1H;;/q;;;;;;2*+2/p-4

InChI key

LAXRNWSASWOFOT-UHFFFAOYSA-J

General description

The ChemBeads product of the (p-Cymene)ruthenium(II) chloride dimer. Loaded at 5% wt. on glass beads for use in high-throughput expermentation (HTE).
Dichloro(p-cymene)ruthenium(II) dimer is commonly used as a ruthenium starting material, and has been used in:
- Bifunctional P-containing RuO2 catalysts prepared from surplus Ru coordination complexes applied to Zn/Air batteries.
- The synthesis of half-sandwich type platinum-group metal complexes of C-glucosaminyl azines.
- The C(sp2)-H bond functionalization along with concomitant (4+2) annulation of coumarin-3-carboxamide.
-The acceptor engineering of ruthenium metallocycles with high phototoxic indices for safer photodynamic therapy.

Features and Benefits

ChemBeads are chemical coated glass beads. ChemBeads offer improved flowability and chemical uniformity perfect for automated solid dispensing and high-throughput experimentation. The method of creating ChemBeads uses no other chemicals or surfactants allowing the user to accurately dispense sub-milligram amounts of chemical.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Chonglu Li et al.
Chemical science, 14(11), 2901-2909 (2023-03-21)
Although metallacycle-based photosensitizers have attracted increasing attention in biomedicine, their clinical application has been hindered by their inherent dark toxicity and unsatisfactory phototherapeutic efficiency. Herein, we employ a π-expansion strategy for ruthenium acceptors to develop a series of Ru(ii) metallacycles
Sebastián Lorca et al.
Nanomaterials (Basel, Switzerland), 13(1) (2023-01-09)
An innovative synthetic route that involves the thermal treatment of selected Ru co-ordination complexes was used to prepare RuO2-based materials with catalytic activity for oxygen reduction (ORR) and oxygen evolution (OER) reactions. Extensive characterization confirmed the presence of Ru metal
Anindita Sarkar et al.
Organic & biomolecular chemistry, 21(27), 5567-5586 (2023-06-26)
Efficacious protocols have been established to synthesize a structurally privileged Π-extended coumarin-fused pyridone nucleus by activating the vinylic C(sp2)-H bond of coumarin-3-carboxamide under the influence of inexpensive Ru(II)-metal. Here an N-methoxy carboxamide entity has been exploited as the chelating fragment
Bryan T Ingoglia et al.
Tetrahedron, 75(32), 4199-4211 (2020-01-04)
Over the past three decades, Pd-catalyzed cross-coupling reactions have become a mainstay of organic synthesis. In particular, catalysts derived from biaryl monophosphines have shown wide utility in forming C-N bonds under mild reaction conditions. This work summarizes a variety of
Ana L Aguirre et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 27(51), 12981-12986 (2021-07-08)
High-throughput experimentation (HTE) methods are central to modern medicinal chemistry. While many HTE approaches to C-N and Csp2 -Csp2 bonds are available, options for Csp2 -Csp3 bonds are limited. We report here how the adaptation of nickel-catalyzed cross-electrophile coupling of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service