Skip to Content
Merck
All Photos(1)

Documents

659894

Sigma-Aldrich

Poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] potassium salt solution

0.25 wt. % in H2O

Synonym(s):

MPS-PPV potassium salt

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C12H13KO5S)n
MDL number:
UNSPSC Code:
12352103
NACRES:
NA.23

Quality Level

concentration

0.25 wt. % in H2O

fluorescence

λex 451 nm; λem 525 nm in H2O

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] potassium salt solution (APPV) is a sulfonated phenylenevinylene (PPV) that acts as a high sensitive water soluble photo-luminescent (PL) polymer. It has an anionic π-conjugation that allows it to have a high fluorescence quantum yield.

Application

APPV can be used as a light emitting polymer that facilitates the enhancement of the fluorescent properties of plasmonic-3D colloidal crystals. It can also be used as a polyelectrolyte which finds potential applications in organic solar cells (OSCs).

Physical properties

Water soluble, light emitting conjugated polymer.

Storage Class Code

10 - Combustible liquids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Assembly of luminescent ordered multilayer thin-films based on oppositely-charged MMT and magnetic NiFe-LDHs nanosheets with ultra-long lifetimes
Liu M, et al.
Scientific Reports, 4, 7147-7147 (2014)
Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles
Darwish GH and Karam P
Nanoscale, 7(37), 15149-15158 (2015)
Light-Emitting Polymers
Pei Q, et al.
Material Matters, 2(3), 26-26 (2007)
Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals
Chen G, et al.
Small, 13(9), 1602612-1602612 (2017)
Conjugated polyelectrolytes: synthesis, photophysics, and applications
Jiang H, et al.
Angewandte Chemie (International ed. in English), 48(24), 4300-4316 (2009)

Articles

LEPs enable a wide range of important applications including sensors, flexible LED displays and lighting devices, optical pump lasers, and potentially polymer diode lasers.

LEPs enable a wide range of important applications including sensors, flexible LED displays and lighting devices, optical pump lasers, and potentially polymer diode lasers.

LEPs enable a wide range of important applications including sensors, flexible LED displays and lighting devices, optical pump lasers, and potentially polymer diode lasers.

LEPs enable a wide range of important applications including sensors, flexible LED displays and lighting devices, optical pump lasers, and potentially polymer diode lasers.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service