Accéder au contenu
Merck

Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions.

Cell (2021-03-18)
Nicoletta I Petridou, Bernat Corominas-Murtra, Carl-Philipp Heisenberg, Edouard Hannezo
RÉSUMÉ

Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Roche
BCIP, solution, >95% (HPLC), pkg of 3 mL (150 mg)
Sigma-Aldrich
Phosphatase, Alkaline shrimp, ≥900 DEA units/mL, buffered aqueous glycerol solution, recombinant, expressed in proprietary host