Accéder au contenu
Merck
Toutes les photos(1)

Key Documents

917834

Sigma-Aldrich

PhotoCol-RUT, methacrylated collagen bioink kit, with ruthenium

Synonyme(s) :

3D Bioprinting, Bioink, Collagen

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Code UNSPSC :
12352201
Nomenclature NACRES :
NA.23

Description

Methacrylated collagen:
Degree of methacrylation ≥ 20%

Product components :
Methacrylated collagen (100 mg)
20 mM acetic acid (50 mL)
Neutralization solution (10 mL)

Ruthenium (100 mg)
Sodium persulfate photoinitiator (500 mg)

Niveau de qualité

Stérilité

sterile; sterile-filtered

Impuretés

≤10 EU/mL Endotoxin

Température de stockage

2-8°C

Application

PhotoCol-RUT bioink kit consists of purified methacrylated Type I bovine collagen as the core component with other support reagents. The methacrylated Type I collagen is produced from telo-peptide intact bovine collagen where the collagen has been modified by reacting the free amines, primarily the ε-amines groups of the lysine residues as well as the α-amines groups on the N-termini. Over 20% of the total lysine residues of the collagen molecule have been methacrylated. A bottle of 20 mM acetic acid solution is provided to solubilize the lyophilized methacrylated collagen at concentrations ranging from 3 to 8 mg/ml. The neutralization solution consists of an alkaline 10X phosphate buffered saline (PBS) solution which provides physiological salts and pH in the final mixture. The photoinitiator consists of ruthenium and sodium persulfate to be formulated in 1X cell culture media or PBS, which allows visible light photocrosslinking of the printed structure at 400-450 nm. PhotoCol-RUT provides native-like 3D collagen gels, and the final gel stiffness can be customized by changing collagen concentrations and crosslinking.

Informations légales

PhotoCol is a trademark of Advanced BioMatrix, Inc.

Pictogrammes

Environment

Mentions de danger

Conseils de prudence

Classification des risques

Aquatic Chronic 2

Code de la classe de stockage

10 - Combustible liquids


Certificats d'analyse (COA)

Recherchez un Certificats d'analyse (COA) en saisissant le numéro de lot du produit. Les numéros de lot figurent sur l'étiquette du produit après les mots "Lot" ou "Batch".

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Kathryn E Drzewiecki et al.
Langmuir : the ACS journal of surfaces and colloids, 30(37), 11204-11211 (2014-09-11)
Type-I collagen self-assembles into a fibrillar gel at physiological temperature and pH to provide a cell-adhesive, supportive, structural network. As such, it is an attractive, popular scaffold for in vitro evaluations of cellular behavior and for tissue engineering applications. In
Abigail Isaacson et al.
Experimental eye research, 173, 188-193 (2018-05-18)
Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However
Andrea Mazzocchi et al.
ACS biomaterials science & engineering, 5(4), 1937-1943 (2019-11-15)
Lung cancer is the leading cause of cancer-related death worldwide yet in vitro disease models have been limited to traditional 2D culture utilizing cancer cell lines. In contrast, recently developed 3D models (organoids) have been adopted by researchers to improve
Ian D Gaudet et al.
Biointerphases, 7(1-4), 25-25 (2012-05-17)
Type-I collagen is an attractive scaffold material for tissue engineering due to its ability to self-assemble into a fibrillar hydrogel, its innate support of tissue cells through bioactive adhesion sites, and its biodegradability. However, a lack of control of material
Mohammad Izadifar et al.
Tissue engineering. Part C, Methods, 24(2), 74-88 (2017-10-21)
Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique