Skip to Content
Merck
All Photos(1)

Key Documents

SML3363

Sigma-Aldrich

GNE-317

≥98% (HPLC)

Synonym(s):

5-(6-(3-Methoxyoxetan-3-yl)-4-morpholinothieno[3,2-d]pyrimidin-2-yl)pyrimidin-2-amine, 5-(6-(3-Methoxyoxetan-3-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-2-yl)pyrimidin-2-amine, 5-[6-(3-Methoxy-3-oxetanyl)-7-methyl-4-(4-morpholinyl)thieno[3,2-d]pyrimidin-2-yl]-2-pyrimidinamine, GNE 317, GNE317

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C19H22N6O3S
CAS Number:
Molecular Weight:
414.48
MDL number:
UNSPSC Code:
12352200
NACRES:
NA.77

Quality Level

Assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: 2 mg/mL, clear

storage temp.

−20°C

SMILES string

NC1=NC=C(C2=NC3=C(C(N4CCOCC4)=N2)SC(C5(COC5)OC)=C3C)C=N1

InChI

1S/C19H22N6O3S/c1-11-13-14(29-15(11)19(26-2)9-28-10-19)17(25-3-5-27-6-4-25)24-16(23-13)12-7-21-18(20)22-8-12/h7-8H,3-6,9-10H2,1-2H3,(H2,20,21,22)

InChI key

XOZLHJMDLKDZAL-UHFFFAOYSA-N

Biochem/physiol Actions

GNE-317 is an orally active potent inhibitor against phosphoinositide 3-kinase (PI3K Ki = 2/α, 27/β, 7/δ, 7/γ) and mTOR (Ki = 9 nM). GNE-317 exhibits antiproliferation potency in glioblastoma cancer cultures (EC50 from 140 to 570 nM in seven cultures) and anti-tumor efficacy in mice in vivo (40 mg/kg/d for 2 wks, then 30 mg/kg/d after; U87, GS2, and GBM10 orthotopic models).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Timothy P Heffron et al.
Journal of medicinal chemistry, 55(18), 8007-8020 (2012-09-06)
Inhibition of phosphoinositide 3-kinase (PI3K) signaling through PI3Kα has received significant attention for its potential in cancer therapy. While the PI3K pathway is a well-established and widely pursued target for the treatment of many cancer types due to the high
Ravi S Narayan et al.
Nature communications, 11(1), 2935-2935 (2020-06-12)
Personalized cancer treatments using combinations of drugs with a synergistic effect is attractive but proves to be highly challenging. Here we present an approach to uncover the efficacy of drug combinations based on the analysis of mono-drug effects. For this
Modulating the tumor microenvironment via oncolytic virus and PI3K inhibition synergistically restores immune checkpoint therapy response in PTEN-deficient glioblastoma.
Fan Xing et al.
Signal transduction and targeted therapy, 6(1), 275-275 (2021-07-29)
Laurent Salphati et al.
Clinical cancer research : an official journal of the American Association for Cancer Research, 18(22), 6239-6248 (2012-09-21)
Glioblastoma (GBM), the most common primary brain tumor in adults, presents a high frequency of alteration in the PI3K pathway. Our objectives were to identify a dual PI3K/mTOR inhibitor optimized to cross the blood-brain barrier (BBB) and characterize its brain
Cedric Tehranian et al.
Neuro-oncology, 24(2), 213-225 (2021-07-04)
Brain metastases (BM) are a frequent complication of malignant melanoma (MM), with limited treatment options and poor survival. Prevention of BM could be more effective and better tolerated than treating established BM in various conditions. To investigate the temporospatial dynamics

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service