Skip to Content
Merck
All Photos(4)

Key Documents

L4158

Sigma-Aldrich

Lithium acetate dihydrate

BioXtra

Synonym(s):

Acetic acid lithium salt

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3COOLi · 2H2O
CAS Number:
Molecular Weight:
102.02
Beilstein:
3564320
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.31

product line

BioXtra

Quality Level

form

solid

impurities

≤0.001% Phosphorus (P)
≤0.1% Insoluble matter

mp

53-56 °C (lit.)

solubility

H2O: 1 M, clear, colorless

anion traces

chloride (Cl-): ≤0.5%
sulfate (SO42-): ≤0.05%

cation traces

Al: ≤0.0005%
Ca: ≤0.005%
Cu: ≤0.0005%
Fe: ≤0.0005%
K: ≤0.005%
Mg: ≤0.001%
NH4+: ≤0.05%
Na: ≤0.005%
Pb: ≤0.001%
Zn: ≤0.0005%

SMILES string

[Li+].[H]O[H].[H]O[H].CC([O-])=O

InChI

1S/C2H4O2.Li.2H2O/c1-2(3)4;;;/h1H3,(H,3,4);;2*1H2/q;+1;;/p-1

InChI key

IAQLJCYTGRMXMA-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

General description

Lithium acetate dihydrate is one of the commercially available forms of lithium acetate. Lithium acetate is a common salt with variety of applications such as, product for efficient yeast transformation, drug formulation and therapy, lithium-6 CP/MAS standard, solvent and catalyst. In addition, it is also used as a buffer for gel electrophoresis of DNA and RNA, additive or catalyst for textiles and polymer production and as a precursor material for batteries and ferromagnetic nanoparticles.

Application

Lithium acetate dihydrate has been used for yeast transformation.

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Single-step marker switching in Schizosaccharomyces pombe using a lithium acetate transformation protocol
Brown SD and Lorenz A
Bio-protocol, 6(24), 295-316 (2016)
Mating based split-ubiquitin assay for detection of protein interactions
Horaruang W and Zhang B
Bio-protocol, 7(4), e2258-e2258 (2017)
MtNODULE ROOT1 and MtNODULE ROOT2 are essential for indeterminate nodule identity
Magne K, et al.
Plant Physiology, 178(1), 295-316 (2018)
Anhydrous lithium acetate polymorphs and its hydrates: three-dimensional coordination polymers
Martinez Casado FJ, et al.
Crystal Growth & Design, 11(4), 1021-1032 (2011)
Mireia Garriga-Canut et al.
Methods (San Diego, Calif.), 178, 19-32 (2019-09-08)
Understanding which proteins and RNAs directly interact is crucial for revealing cellular mechanisms of gene regulation. Efficient methods allowing to detect RNA-protein interactions and dissect the underlying molecular origin for RNA-binding protein (RBP) specificity are in high demand. The recently

Articles

Transformation introduces exogenous DNA into cells, a fundamental genetic modification process demonstrated in Streptococcus pneumoniae.

Transformation introduces exogenous DNA into cells, a fundamental genetic modification process demonstrated in Streptococcus pneumoniae.

Transformation introduces exogenous DNA into cells, a fundamental genetic modification process demonstrated in Streptococcus pneumoniae.

Transformation introduces exogenous DNA into cells, a fundamental genetic modification process demonstrated in Streptococcus pneumoniae.

Protocols

Yeasts are considered model systems for eukaryotic studies as they exhibit fast growth and have dispersed cells.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service