Skip to Content
Merck
All Photos(2)

Key Documents

917710

Sigma-Aldrich

A1V1PF2-OEt

≥95%

Synonym(s):

AVP ligand, Ethyl (S)-2-((S)-1-((S)-2-((S)-2-aminopropanamido)-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamido)-3-(4-fluorophenyl)propanoate, IAP E3 ligase lead for protein degrader research, SNIPER building block

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C25H37FN4O5
Molecular Weight:
492.58
MDL number:
UNSPSC Code:
41116105
NACRES:
NA.22

ligand

A1V1PF2

Quality Level

Assay

≥95%

form

powder

reaction suitability

reagent type: ligand

functional group

amine

storage temp.

2-8°C

SMILES string

N[C@H](C(N[C@H](C(N1CCC[C@H]1C(N[C@H](C(OCC)=O)CC2=CC=C(C=C2)F)=O)=O)C(C)(C)C)=O)C

InChI key

VMRCYJZQDCYTJO-MVJPYGJCSA-N

Application

A1V1PF2-OEt is an in silico-derived inhibitor of apoptosis protein (IAP)-recruiting ligand for targeted protein degradation and SNIPER (specific and non-genetic IAP-dependent protein erasers) development, launched in partnership with ComInnex. Learn more about the novel IAP ligands generated through virtual screening of AVP mimetics in our Technology Spotlight. An N-terminal variant of A1V1PF2-OEt is also available as BocA1V1PF2 (917478).

A1V1PF2-OEt conjugates are also available for degrader synthesis. Browse our full synthesis offering here: Browse our full synthesis offering here for streamlining SNIPER and PROTAC® degrader libraries: Degrader Building Blocks

917427 A1V1PF2-OEt-C6-NH2 hydrochloride
917672 A1V1PF2-OEt-C10-NH2 hydrochloride
917923 A1V1PF2-OEt-PEG1-NH2 hydrochloride
916676 A1V1PF2-OEt-PEG3-NH2 hydrochloride

Technology Spotlight: Degrader Building Blocks with Inhibitor of Apoptosis Protein (IAP) In Silico-Derived Ligands

Legal Information

PROTAC is a registered trademark of Arvinas Operations, Inc., and is used under license

related product

Product No.
Description
Pricing

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Nobumichi Ohoka et al.
The Journal of biological chemistry, 292(11), 4556-4570 (2017-02-06)
Many diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies
Tasuku Ishida et al.
SLAS discovery : advancing life sciences R & D, 26(4), 484-502 (2020-11-05)
Bifunctional degrader molecules, also called proteolysis-targeting chimeras (PROTACs), are a new modality of chemical tools and potential therapeutics to understand and treat human disease. A required PROTAC component is a ligand binding to an E3 ubiquitin ligase, which is then joined to another ligand binding to a protein to
Mikihiko Naito et al.
Drug discovery today. Technologies, 31, 35-42 (2019-06-16)
The induction of protein degradation by chimeric small molecules represented by proteolysis-targeting chimeras (PROTACs) is an emerging approach for novel drug development. We have developed a series of chimeric molecules termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein

Articles

Targeted protein degradation reduces disease-relevant proteins in cells using small molecules, hijacking endogenous proteolysis systems.

Targeted protein degradation reduces disease-relevant proteins in cells using small molecules, hijacking endogenous proteolysis systems.

Targeted protein degradation reduces disease-relevant proteins in cells using small molecules, hijacking endogenous proteolysis systems.

Targeted protein degradation reduces disease-relevant proteins in cells using small molecules, hijacking endogenous proteolysis systems.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service