Skip to Content
Merck
All Photos(3)

Key Documents

716006

Sigma-Aldrich

6,13-Bis(triisopropylsilylethynyl)pentacene

≥99% (HPLC)

Synonym(s):

TIPS pentacene

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C44H54Si2
CAS Number:
Molecular Weight:
639.07
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥99% (HPLC)

form

solid

mp

276 °C

solubility

acetone: soluble 0.16 wt. % at 23 °C(lit.)
anisole: soluble 2.03 wt. % at 23 °C(lit.)
n-butylbenzene: soluble 3.43 wt. % at 23 °C(lit.)
toluene: soluble 6.57 wt. % at 23 °C(lit.)

density

1.104 g/cm3 at 25 °C

SMILES string

CC(C)[Si](C#Cc1c2cc3ccccc3cc2c(C#C[Si](C(C)C)(C(C)C)C(C)C)c4cc5ccccc5cc14)(C(C)C)C(C)C

InChI

1S/C44H54Si2/c1-29(2)45(30(3)4,31(5)6)23-21-39-41-25-35-17-13-15-19-37(35)27-43(41)40(22-24-46(32(7)8,33(9)10)34(11)12)44-28-38-20-16-14-18-36(38)26-42(39)44/h13-20,25-34H,1-12H3

InChI key

FMZQNTNMBORAJM-UHFFFAOYSA-N

General description

6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) is a conductive polymer that can form organic thin films for a variety of semiconductor applications due to its high charge carrier mobility and stability.

Application

TIPS Pentacene is a high-performance soluble organic semiconductor for printed and flexible electronics applications. Material Matters 4.3 - Organic and Molecular Electronics Examples include the fabrication of organic field effect transistors (OFETs) with the highest reported switching speeds and field-effect mobilities in its class.
TIPS-pentacene forms a hybrid with (6,6)-phenylC61-butyric acid methyl ester (PCBM) which can be used as an organic layer that can be coated onto a silicon (Si) substrate for the fabrication of a highly efficient terahertz (THz) modulator. It can be used as a piezoresisitive sensor that produces multiple strain sensors (single sensors and sensor arrays). Organic thin-film transistors can be developed by using silver electrodes as dielectric materials and TIPS-pentacene as a semiconducting layer, which can be deposited via inkjet printing.

Legal Information

Material Matters is a trademark of Sigma-Aldrich Co. LLC

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

SeungBeum Suh et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 6(3), 1801309-1801309 (2019-02-19)
Cancer drug delivery remains a formidable challenge due to systemic toxicity and inadequate extravascular transport of nanotherapeutics to cells distal from blood vessels. It is hypothesized that, in absence of an external driving force, the Salmonella enterica serovar Typhimurium could
Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors.
Yu X, et al.
Journal of Material Chemistry C, 1(40), 6532-6535 (2013)
Fabrizio Antonio Viola et al.
Scientific reports, 8(1), 8073-8073 (2018-05-26)
In this study, a novel approach to the fabrication of a multimodal temperature and force sensor on ultrathin, conformable and flexible substrates is presented. This process involves coupling a charge-modulated organic field-effect transistor (OCMFET) with a pyro/piezoelectric element, namely a
Trilayer hybrid structures for highly efficient THz modulation.
Song M, et al.
Optics Express, 26(19), 25315-25321 (2018)
An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films.
Wang Z, et al.
Advanced Materials, 29(38), 1703192-1703192 (2017)

Articles

Highly reducing or oxidizing species enhance organic semiconductor conductivity by reducing charge-carrier injection barriers.

Highly reducing or oxidizing species enhance organic semiconductor conductivity by reducing charge-carrier injection barriers.

Highly reducing or oxidizing species enhance organic semiconductor conductivity by reducing charge-carrier injection barriers.

Highly reducing or oxidizing species enhance organic semiconductor conductivity by reducing charge-carrier injection barriers.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service