Skip to Content
Merck
All Photos(1)

Key Documents

647675

Sigma-Aldrich

Silicon

wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.5 mm

Synonym(s):

Silicon element

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Si
CAS Number:
Molecular Weight:
28.09
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

form

crystalline (cubic (a = 5.4037))
wafer (single side polished)

Quality Level

contains

boron as dopant

diam. × thickness

2 in. × 0.5 mm

bp

2355 °C (lit.)

mp

1410 °C (lit.)

density

2.33 g/mL at 25 °C (lit.)

semiconductor properties

<100>, P-type

SMILES string

[Si]

InChI

1S/Si

InChI key

XUIMIQQOPSSXEZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

<100> Silicon wafer may be used as a substrate for the epitaxial growth of SiC, and TiN thin films.

Packaging

1EA refers to 1 wafer and 5EA refers to 5 wafers

Physical properties

0 vortex defects. Etch pitch density (EPD) < 100 (cm-2). Resistivity 10-3 - 40 Ω•cm
Oxygen content: <= 1~1.8 x 1018 /cm3; Carbon content: <= 5 x 1016 /cm3; Boule diameter: 1~8 ″

Storage Class Code

13 - Non Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition.
Narayan J, et al.
Applied Physics Letters, 61(11), 1290-1292 (1992)
Epitaxial growth of 3C?SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition.
Zorman CA, et al.
Journal of Applied Physics, 78(8), 193-198 (2014)
Bo-Soon Kim et al.
Journal of nanoscience and nanotechnology, 13(5), 3622-3626 (2013-07-19)
A subwavelength structure (SWS) was formed via a simple chemical wet etching using a gold (Au) catalyst. Single nano-sized Au particles were fabricated by metallic self-aggregation. The deposition and thermal annealing of the thin metallic film were carried out. Thermal
Chengyong Li et al.
Journal of nanoscience and nanotechnology, 13(3), 2272-2275 (2013-06-13)
Mesoporous Si-C-O fibers were fabricated by air activation of a kind of carbon-rich SiC-C fibers at 600 degrees C. The SiC-C fibers were prepared from the hybrid precursor of polycarbosilane and pitch through melt-spinning, air curing and pyrolysis in nitrogen.
Pil Ju Ko et al.
Journal of nanoscience and nanotechnology, 13(4), 2451-2460 (2013-06-15)
The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon

Articles

Hybrid organic-inorganic sol-gel materials containing silica were first called “ORMOSILs” in 1984.

Protocols

Photoresist kit offers pre-weighed chemical components for lithographic processes, with separate etchants for various substrate choices.

Photoresist kit offers pre-weighed chemical components for lithographic processes, with separate etchants for various substrate choices.

Photoresist kit offers pre-weighed chemical components for lithographic processes, with separate etchants for various substrate choices.

Photoresist kit offers pre-weighed chemical components for lithographic processes, with separate etchants for various substrate choices.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service