Skip to Content
Merck
All Photos(3)

Key Documents

544760

Sigma-Aldrich

Zirconium(IV) oxide

nanopowder, <100 nm particle size (TEM)

Synonym(s):

Nano zirconium oxide, ZrO2 nanoparticles, Zirconia

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
ZrO2
CAS Number:
Molecular Weight:
123.22
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

form

nanopowder

Quality Level

reaction suitability

reagent type: catalyst
core: zirconium

surface area

≥25 m2/g

particle size

<100 nm (TEM)

bp

5000 °C (lit.)

mp

2700 °C (lit.)

density

5.89 g/mL at 25 °C (lit.)

SMILES string

O=[Zr]=O

InChI

1S/2O.Zr

InChI key

MCMNRKCIXSYSNV-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Zirconium(IV) oxide (ZrO2) which is also known as zirconia is a ceramic nanoparticle that can be used as a nano-filler. It can be incorporated in a variety of polymer and metal composites to improve the thermo-mechanical properties of the base material.

Application

ZrO2 can be used as a filler material on PMMA which can further be used as a high strength denture base material. It can also be used as a composite based metallic coating that can improve the overall mechanical properties of the substrate.

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Friction and wear behavior of zirconium oxide reinforced PMMA composites
Akinci A, et al.
Composites Part B: Engineering, 56(1-2), 42-47 (2014)
Support and solvent effects on the liquid-phase chemoselective hydrogenation of crotonaldehyde over Pt catalysts
Hidalgo-Carrillo J, et al.
Applied Catalysis A: General, 385(1-2), 190-200 (2010)
Paolo Vigolo et al.
Journal of prosthodontics : official journal of the American College of Prosthodontists, 17(8), 621-626 (2008-09-19)
The purpose of this study was to assess in vitro the marginal fit of four-unit fixed partial dentures (FPDs) produced using three different computer aided design/computer aided manufacturing (CAD/CAM) all-ceramic systems before and after porcelain firing cycles and after glaze
Zhongpu Zhang et al.
Acta biomaterialia, 9(9), 8394-8402 (2013-05-21)
Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of
Katarzyna Zielińska et al.
Journal of colloid and interface science, 377(1), 362-367 (2012-04-14)
Ni-P-nano-ZrO(2) coatings were produced using the electroless deposition technique. To prevent agglomeration of zirconia nanoparticles in the plating bath, various surfactant additives (anionic, cationic, and nonionic) were used. The most stable bath was obtained with the addition of dodecyltrimethylammonium bromide

Articles

Hydrogen is one of the most important resources in providing food, fuel, and chemical products for our everyday life. Sustainable catalytic hydrogen production from bioethanol has gained significant attention in recent years due to globally diminishing fossil fuel supplies, which have necessitated the search for new chemical feedstocks.

Nanomaterials are considered a route to the innovations required for large-scale implementation of renewable energy technologies in society to make our life sustainable.

Nanomaterials are considered a route to the innovations required for large-scale implementation of renewable energy technologies in society to make our life sustainable.

Nanomaterials are considered a route to the innovations required for large-scale implementation of renewable energy technologies in society to make our life sustainable.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service