222011
Copper(II) chloride
97%
Synonym(s):
Cupric chloride
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Quality Level
Assay
97%
form
powder
reaction suitability
core: copper
reagent type: catalyst
mp
620 °C (lit.)
density
3.386 g/mL at 25 °C (lit.)
SMILES string
Cl[Cu]Cl
InChI
1S/2ClH.Cu/h2*1H;/q;;+2/p-2
InChI key
ORTQZVOHEJQUHG-UHFFFAOYSA-L
Looking for similar products? Visit Product Comparison Guide
Related Categories
Application
Copper(II) chloride may be used in the preparation of copper(II)-chitosan complexes with potential applications in biomedical devices as antibiotic-free antibacterial biomaterials due to their cytocompatibility and antibacterial property.
Effective catalyst for the tetrahydropyranylation of alcohols, using mild conditions and in high yields.
Used with palladium in a catalytic synthesis of 3-haloindoles via an annulation process.
related product
Product No.
Description
Pricing
Signal Word
Danger
Hazard Statements
Precautionary Statements
Hazard Classifications
Acute Tox. 4 Dermal - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 2 - Eye Dam. 1 - Skin Irrit. 2
Storage Class Code
8A - Combustible corrosive hazardous materials
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Marine drugs, 18(12) (2020-12-30)
In recent years, due to an expansion of antibiotic-resistant microorganisms, there has been growing interest in biodegradable and antibacterial polymers that can be used in selected biomedical applications. The present work describes the synthesis of antimicrobial polylactide-copper alginate (PLA-ALG-Cu2+) composite
Nanomaterials (Basel, Switzerland), 10(10) (2020-10-25)
The cost-effective spray coated composite was successfully synthesis and characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction techniques. The one step synthetic strategy was used for the synthesis of nanoplates that have a crystalline nature.
Nanomaterials (Basel, Switzerland), 9(2) (2019-02-10)
Due to the extreme rise of sludge pollution with heavy metals (e.g. copper), the options for its disposal or treatment are decreasing. On the contrary, properly heavy metal-cleaned sludge can be used as an alternative sustainable energy and agriculture source.
Synthesis, 1841-1841 (2007)
Synthetic Communications, 26, 3081-3081 (1996)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service