Skip to Content
Merck
All Photos(1)

Documents

EHU062671

Sigma-Aldrich

MISSION® esiRNA

targeting human SOX10, MIR6820

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41105324
NACRES:
NA.51

description

Powered by Eupheria Biotech

product line

MISSION®

form

lyophilized powder

esiRNA cDNA target sequence

CTGAAGGCAGGAAGGAGTTGGCACAGAGGCCCCCTGATCCAATTCTGTGCCAATAACCTCATTCTTTGTCTGAGAAACAGCCCCCAGTCCTCCTCCACTACAACCTCCATGACCTTGAGACGCATCCCAGGAGGTGACGAGGCAGGGGCTCCAGGAAAGGAATCAGAGACAATTCACAGAGCCTCCCTCCCTGGGCTCCTTGCCAGCTCCCTCTTCCCTTACTAGGCTCTATGGCCCCTGCTCAGTCAGCCCCACTCCCTGGGCTTCCCAGAGAGTGACAGCTGCTCAGGCCCTAACCCTTGGCTCCAGGAGACACAGGGCCCAGCACCCAGGTTGCTGTCGGCAGGCTGAAGACACTAGAATCCTGACCTGTACATTCTGCCCTTGCCTCTTACCCCTTGCCTCCCAGTGGTATTT

Ensembl | human accession no.

NCBI accession no.

shipped in

ambient

storage temp.

−20°C

Gene Information

General description

MISSION® esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.

For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.

Legal Information

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

10 - Combustible liquids

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Carmen Bravo González-Blas et al.
Nature methods, 16(5), 397-400 (2019-04-10)
We present cisTopic, a probabilistic framework used to simultaneously discover coaccessible enhancers and stable cell states from sparse single-cell epigenomics data ( http://github.com/aertslab/cistopic ). Using a compendium of single-cell ATAC-seq datasets from differentiating hematopoietic cells, brain and transcription factor perturbations
Wen Feng et al.
Biochemical and biophysical research communications, 485(2), 522-528 (2017-02-13)
The mechanisms modulating the cancer stem cell (CSC) properties of triple negative breast cancer (TNBC) cells were not fully understood. In this study, we performed data mining in Breast Cancer Gene-Expression Miner v4.0 and found that TNBC tumors had significantly
Liesbeth Minnoye et al.
Genome research, 30(12), 1815-1834 (2020-08-01)
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell
Jasper Wouters et al.
Nature cell biology, 22(8), 986-998 (2020-08-06)
Melanoma cells can switch between a melanocytic and a mesenchymal-like state. Scattered evidence indicates that additional intermediate state(s) may exist. Here, to search for such states and decipher their underlying gene regulatory network (GRN), we studied 10 melanoma cultures using

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service