Skip to Content
Merck
All Photos(3)

Documents

901511

Sigma-Aldrich

(S,R,S)-AHPC-PEG3-NH2 hydrochloride

≥95%

Synonym(s):

(2S,4R)-1-((S)-14-Amino-2-(tert-butyl)-4-oxo-6,9,12-trioxa-3-azatetradecanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide hydrochloride, Crosslinker–E3 Ligase ligand conjugate, Protein degrader building block for PROTAC® research, Template for synthesis of targeted protein degrader, VH032 conjugate

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C30H45N5O7S · xHCl
CAS Number:
Molecular Weight:
619.77 (free base basis)
UNSPSC Code:
12352101
NACRES:
NA.22

ligand

VH032

Quality Level

Assay

≥95%

form

powder or crystals

reaction suitability

reactivity: carboxyl reactive
reagent type: ligand-linker conjugate

functional group

amine

storage temp.

2-8°C

SMILES string

O=C(NCC1=CC=C(C2=C(C)N=CS2)C=C1)[C@H](C[C@@H](O)C3)N3C([C@H](C(C)(C)C)NC(COCCOCCOCCN)=O)=O.Cl

Application

Protein degrader builiding block (S,R,S)-AHPC-PEG3-NH2 (HCl salt) enables the synthesis of molecules for targeted protein degradation and PROTAC (proteolysis-targeting chimeras) technology. This conjugate contains a von Hippel-Lindau (VHL)-recruiting ligand and a PEGylated crosslinker with pendant amine for reactivity with a carboxyl group on the target ligand. Because even slight alterations in ligands and crosslinkers can affect ternary complex formation between the target, E3 ligase, and PROTAC, many analogs are prepared to screen for optimal target degradation. When used with other protein degrader building blocks with a pendant amine, parallel synthesis can be used to more quickly generate PROTAC libraries that feature variation in crosslinker length, composition, and E3 ligase ligand.

Automate your VHL-PEG based PROTACs with Synple Automated Synthesis Platform (SYNPLE-SC002)

Legal Information

PROTAC is a registered trademark of Arvinas Operations, Inc., and is used under license

related product

Product No.
Description
Pricing

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Philipp Ottis et al.
ACS chemical biology, 12(10), 2570-2578 (2017-08-03)
Proteolysis targeting chimera (PROTAC) technology, the recruitment of E3 ubiquitin ligases to induce the degradation of a protein target, is rapidly impacting chemical biology, as well as modern drug development. Here, we explore the universality of this approach by evaluating
David Remillard et al.
Angewandte Chemie (International ed. in English), 56(21), 5738-5743 (2017-04-19)
The bromodomain-containing protein BRD9, a subunit of the human BAF (SWI/SNF) nucleosome remodeling complex, has emerged as an attractive therapeutic target in cancer. Despite the development of chemical probes targeting the BRD9 bromodomain, there is a limited understanding of BRD9
Kwok-Ho Chan et al.
Journal of medicinal chemistry, 61(2), 504-513 (2017-06-09)
The design of proteolysis-targeting chimeras (PROTACs) is a powerful small-molecule approach for inducing protein degradation. PROTACs conjugate a target warhead to an E3 ubiquitin ligase ligand via a linker. Here we examined the impact of derivatizing two different BET bromodomain
Kedra Cyrus et al.
Molecular bioSystems, 7(2), 359-364 (2010-10-06)
Conventional genetic approaches have provided a powerful tool in the study of proteins. However, these techniques often preclude selective manipulation of temporal and spatial protein functions, which is crucial for the investigation of dynamic cellular processes. To overcome these limitations
Momar Toure et al.
Angewandte Chemie (International ed. in English), 55(6), 1966-1973 (2016-01-13)
The current inhibitor-based approach to therapeutics has inherent limitations owing to its occupancy-based model: 1) there is a need to maintain high systemic exposure to ensure sufficient in vivo inhibition, 2) high in vivo concentrations bring potential for off-target side effects, and 3) there is

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service