Skip to Content
Merck
All Photos(1)

Key Documents

357073

Sigma-Aldrich

Indium

wire, diam. 1.0 mm, 99.995% trace metals basis

Synonym(s):

Indium element

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
In
CAS Number:
Molecular Weight:
114.82
EC Number:
MDL number:
UNSPSC Code:
12141719
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

<0.01 mmHg ( 25 °C)

Assay

99.995% trace metals basis

form

wire

resistivity

8.37 μΩ-cm

diam.

1.0 mm

mp

156.6 °C (lit.)

density

7.3 g/mL at 25 °C (lit.)

SMILES string

[In]

InChI

1S/In

InChI key

APFVFJFRJDLVQX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Quantity

5.6 g = 1 m; 28 g = 5 m

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

STOT RE 1 Inhalation

Target Organs

Lungs

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 3

1 of 3

Juan Zhou et al.
Chemical communications (Cambridge, England), 49(22), 2237-2239 (2013-02-12)
A reduced graphene oxide (RGO)-ZnIn(2)S(4) nanosheet composite was successfully synthesized via an in situ controlled growth process. The as-obtained RGO-ZnIn(2)S(4) composite showed excellent visible light H(2) production activity in the absence of noble metal cocatalysts.
Thirumaleshwara N Bhat et al.
Journal of nanoscience and nanotechnology, 13(1), 498-503 (2013-05-08)
The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD
Yongseok Kwon et al.
Organic letters, 15(4), 920-923 (2013-02-05)
This paper documents the first example of In(III)-catalyzed selective 6-exo-dig hydroarylation of o-propargylbiaryls and their subsequent double-bond migration to obtain functionalized phenanthrenes. Electron-rich biaryl substrates undergo hydroarylation more effectively, and the substrates with various types of substituents on the alkyne
Han-Youl Ryu et al.
Optics express, 21 Suppl 1, A190-A200 (2013-02-15)
We investigate the dependence of various efficiencies in GaN-based vertical blue light-emitting diode (LED) structures on the thickness and doping concentration of the n-GaN layer by using numerical simulations. The electrical efficiency (EE) and the internal quantum efficiency (IQE) are
Dawei Deng et al.
Physical chemistry chemical physics : PCCP, 15(14), 5078-5083 (2013-03-02)
Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service