Skip to Content
Merck
All Photos(2)

Key Documents

203556

Sigma-Aldrich

Lanthanum(III) oxide

99.999% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
La2O3
CAS Number:
Molecular Weight:
325.81
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.999% trace metals basis

form

powder

reaction suitability

reagent type: catalyst
core: lanthanum

density

6.51 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

O=[La]O[La]=O

InChI

1S/2La.3O

InChI key

KTUFCUMIWABKDW-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Precursor to LAMOX fast ion conductors and superconductors.

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A J Barón-González et al.
Journal of physics. Condensed matter : an Institute of Physics journal, 23(49), 496003-496003 (2011-11-24)
The origin of dielectric anomalies and magnetodielectric response of La(2)MnCoO(6) has been investigated by means of ultra-high resolution synchrotron x-ray powder diffraction, neutron powder diffraction, resistivity, magnetization and dielectric measurements. The study has been performed on two different bulk samples
Lukas C Gerber et al.
Chemical communications (Cambridge, England), 48(32), 3869-3871 (2012-03-14)
Lanthanum oxide nanoparticles were utilized to scavenge phosphate from microbial growth media for the use of targeted nutrient starvation as an antimicrobial strategy. Only in phosphate poor environments a toxic effect was observed. The effect was shown on Escherichia coli
Lixia Wang et al.
Journal of hazardous materials, 196, 342-349 (2011-09-29)
This investigation was to increase the adsorption capacity of magnetite for Congo red (CR) by adulterating a small quantity of La(3+) ions into it. The adsorption capability of nanocrystalline Fe(3-x)La(x)O(4) (x=0, 0.01, 0.05, 0.10) ferrite to remove CR from aqueous
A K Singh et al.
Optics letters, 37(5), 776-778 (2012-03-02)
Low-power-threshold cw laser-induced incandescence (CWLII) has been observed in La(2)O(3):Er(3+)-Yb(3+) phosphor on excitation by a 976 nm IR laser. It is suggested that incandescence originates from the extensive heating induced by the nonradiative processes taking place following the laser excitation.
Hui Sun et al.
Bioresource technology, 101(3), 953-958 (2009-09-22)
ZrO(2) supported La(2)O(3) catalyst prepared by impregnation method was examined in the transesterification reaction of sunflower oil with methanol to produce biodiesel. It was found that the catalyst with 21 wt% loaded La(2)O(3) and calcined at 600 degrees C showed

Articles

Rechargeable solid-state batteries are becoming increasingly important due to wide-spread use in computers, portable electronics, and vehicular applications.

Rechargeable solid-state batteries are becoming increasingly important due to wide-spread use in computers, portable electronics, and vehicular applications.

Rechargeable solid-state batteries are becoming increasingly important due to wide-spread use in computers, portable electronics, and vehicular applications.

Rechargeable solid-state batteries are becoming increasingly important due to wide-spread use in computers, portable electronics, and vehicular applications.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service