Skip to Content
Merck
All Photos(1)

Key Documents

I9381

Sigma-Aldrich

Isovaleryl coenzyme A lithium salt hydrate

≥90%

Synonym(s):

IV-CoA

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C26H44N7O17P3S · xLi+ · yH2O
Molecular Weight:
851.65 (free acid basis)
UNSPSC Code:
41106305
PubChem Substance ID:
NACRES:
NA.51

Quality Level

Assay

≥90%

storage temp.

−20°C

SMILES string

[Li+].[Li+].[Li+].[H]O[H].CC(C)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)([O-])=O)n2cnc3c(N)ncnc23

InChI

1S/C26H44N7O17P3S.3Li.H2O/c1-14(2)9-17(35)54-8-7-28-16(34)5-6-29-24(38)21(37)26(3,4)11-47-53(44,45)50-52(42,43)46-10-15-20(49-51(39,40)41)19(36)25(48-15)33-13-32-18-22(27)30-12-31-23(18)33;;;;/h12-15,19-21,25,36-37H,5-11H2,1-4H3,(H,28,34)(H,29,38)(H,42,43)(H,44,45)(H2,27,30,31)(H2,39,40,41);;;;1H2/q;3*+1;/p-3/t15-,19-,20-,21+,25-;;;;/m1..../s1

InChI key

RABPIYFVNICBEC-YVBWDKSKSA-K

General description

Isovaleryl coenzyme A is an intermediate in leucine catabolism. Iv-CoA is synthesized from β-methylbutyric acid by the action of enzyme acyl CoA synthetase. The conversion of isovaleryl-CoA to methylcrotonyl-CoA is catalyzed by the enzyme isovaleryl-CoA dehydrogenase in leucine catabolism pathway. The enzyme isovaleryl-CoA oxidase also calalyzes this conversion in fatty acid β-oxidation pathway.

Application

Isovaleryl coenzyme A (IV-CoA ) lithium salt hydrate may be used:
  • as substrate for β-Hydroxy-β-methylbutyric acid synthesis in cell-free extracts from G. reessii
  • in high-performance liquid chromatography (HPLC) for the characterization of IV-CoA from lymphocytes
  • as a substrate in isovaleryl-CoA dehydrogenase assay

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

G Tajima et al.
Journal of inherited metabolic disease, 27(5), 633-639 (2005-01-27)
Maple syrup urine disease (MSUD) is caused by a congenital defect of the branched-chain alpha-ketoacid dehydrogenase complex (BCKADC), and is one of the target disorders in newborn screening. However, it is not always easy to confirm the diagnosis; conventional methods
Taifo Mahmud et al.
Chembiochem : a European journal of chemical biology, 6(2), 322-330 (2004-12-28)
A biosynthetic shunt pathway branching from the mevalonate pathway and providing starter units for branched-chain fatty acid and secondary metabolite biosynthesis has been identified in strains of the myxobacterium Stigmatella aurantiaca. This pathway is upregulated when the branched-chain alpha-keto acid
Helge B Bode et al.
Journal of bacteriology, 188(18), 6524-6528 (2006-09-06)
Isovaleryl-coenzyme A (IV-CoA) is the starting unit for some secondary metabolites and iso-odd fatty acids in several bacteria. According to textbook biochemistry, IV-CoA is derived from leucine degradation, but recently an alternative pathway that branches from the well-known mevalonate-dependent isoprenoid
Lee et al.
Archives of microbiology, 169(3), 257-262 (1998-03-28)
Galactomyces reessii accomplishes the enzymatic transformation of beta-methylbutyric acid (isovaleric acid) to beta-hydroxy-beta-methylbutyric acid. The enzymatic basis for this bioconversion was evaluated by analyzing cell-free extracts of G. reessii for enzyme activities commonly associated with leucine catabolism. G. reessii extracts
Tobias Bock et al.
Nucleic acids research, 45(4), 2166-2178 (2016-12-13)
Isovaleryl coenzyme A (IV-CoA) is an important building block of iso-fatty acids. In myxobacteria, IV-CoA is essential for the formation of signaling molecules involved in fruiting body formation. Leucine degradation is the common source of IV-CoA, but a second, de

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service