Skip to Content
Merck
All Photos(1)

Key Documents

F6892

Sigma-Aldrich

Farnesyl pyrophosphate ammonium salt

methanol:ammonia solution, ≥95% (TLC)

Synonym(s):

3,7,11-Trimethyl-2,6,10-dodecatrien-1-yl pyrophosphate ammonium salt, FPP

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C15H37N3O7P2
CAS Number:
Molecular Weight:
433.42
MDL number:
UNSPSC Code:
12352204
PubChem Substance ID:
NACRES:
NA.83

Quality Level

Assay

≥95% (TLC)

form

methanol:ammonia solution

packaging

vial of 200 μg

storage temp.

−20°C

SMILES string

C\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP(O)(=O)OP(O)(O)=O

InChI

1S/C15H28O7P2/c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-21-24(19,20)22-23(16,17)18/h7,9,11H,5-6,8,10,12H2,1-4H3,(H,19,20)(H2,16,17,18)/b14-9+,15-11+

InChI key

VWFJDQUYCIWHTN-YFVJMOTDSA-N

Gene Information

rat ... Fnta(25318)

General description

Farnesyl pyrophosphate is a 15-carbon isoprenoid synthesized from geranyl pyrophosphate (GPP) by the action of enzyme farnesyl pyrophosphate synthase (FPPS).

Application

Farnesyl pyrophosphate ammonium salt has been used:
  • as a prenylation agonist in human osteogenic sarcoma cells in collagen-based cell invasion assays
  • in the prenylation of the hepatocyte growth factor (HGF) in human umbilical vein endothelial cells (HUVECs)
  • as a substrate in prenyltransferases assay in diatom Haslea ostrearia

Biochem/physiol Actions

Farnesyl pyrophosphate (FPP) is the precursor for the biosynthesis of cholesterol, ubiquinone and dolicol. It is part of the intracellular mevalonate pathway. FPP is essential for cell survival and is used for prenylation of several low molecular mass G proteins, including Ras. Inhibition of prenylation results in loss of oncogenic potential of Ras proteins. Inhibition of prenylation may serve as therapeutic potential for management of synaptic plasticity and Alzheimer′s disease.

Physical form

Solution in methanol: 10mM aqueous NH4OH (7:3)
Actual concentration given on label

Signal Word

Danger

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 3 Inhalation - Acute Tox. 3 Oral - Aquatic Chronic 3 - Eye Irrit. 2 - Flam. Liq. 2 - Skin Irrit. 2 - STOT SE 1

Target Organs

Eyes,Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 2

Flash Point(F)

60.8 °F

Flash Point(C)

16 °C


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

John M Sanders et al.
Journal of medicinal chemistry, 48(8), 2957-2963 (2005-04-15)
We report the design, synthesis and testing of a series of novel bisphosphonates, pyridinium-1-yl-hydroxy-bisphosphonates, based on the results of comparative molecular similarity indices analysis and pharmacophore modeling studies of farnesyl diphosphate synthase (FPPS) inhibition, human Vgamma2Vdelta2 T cell activation and
Matrix metalloproteinase-1 contribution to sarcoma cell invasion
Garamszegi N, et al.
Journal of Cellular and Molecular Medicine, 16(6), 1331-1341 (2012)
Structural characterization of substrate and inhibitor binding to farnesyl pyrophosphate synthase from Pseudomonas aeruginosa
Schmidberger JW, et al.
Acta Crystallographica Section D, Biological Crystallography, 71(3), 721-731 (2015)
Protein prenylation: enzymes, therapeutics, and biotechnology applications
Palsuledesai CC and Distefano MD
ACS Chemical Biology, 10(1), 51-62 (2014)
Petra M Bleeker et al.
Proceedings of the National Academy of Sciences of the United States of America, 109(49), 20124-20129 (2012-11-22)
Tomato breeding has been tremendously efficient in increasing fruit quality and quantity but did not focus on improving herbivore resistance. The biosynthetic pathway for the production of 7-epizingiberene in a wild tomato was introduced into a cultivated greenhouse variety with

Articles

Cholesterol biosynthesis starts in the hepatic endoplasmic reticulum with acetyl-CoA, yielding 3-hydroxy-3-methylglutaryl-CoA via HMG-CoA synthase.

Cholesterol biosynthesis starts in the hepatic endoplasmic reticulum with acetyl-CoA, yielding 3-hydroxy-3-methylglutaryl-CoA via HMG-CoA synthase.

Cholesterol biosynthesis starts in the hepatic endoplasmic reticulum with acetyl-CoA, yielding 3-hydroxy-3-methylglutaryl-CoA via HMG-CoA synthase.

Cholesterol biosynthesis starts in the hepatic endoplasmic reticulum with acetyl-CoA, yielding 3-hydroxy-3-methylglutaryl-CoA via HMG-CoA synthase.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service