Skip to Content
Merck
All Photos(3)

Key Documents

633097

Sigma-Aldrich

Silicon

nanopowder, <100 nm particle size (TEM), ≥98% trace metals basis

Synonym(s):

Silicon anode material

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Si
CAS Number:
Molecular Weight:
28.09
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥98% trace metals basis

form

nanopowder

particle size

<100 nm (TEM)

bp

2355 °C (lit.)

mp

1410 °C (lit.)

density

2.33 g/mL at 25 °C (lit.)

SMILES string

[Si]

InChI

1S/Si

InChI key

XUIMIQQOPSSXEZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Our battery-grade silicon nanopowder features a 100 nm particle size with a purity of 98%. This light grey powder is a highly sought-after material for advanced battery research and development due to its exceptional electrochemical properties. It has a high specific surface area, allowing for better electrochemical performance, and its small particle size ensures excellent dispersion within battery electrode formulations. With consistent particle size and high purity, this silicon nanopowder is an excellent choice for battery researchers and manufacturers looking to enhance the performance of their lithium-ion batteries.

Application

Our silicon nanopowder is a highly versatile material with applications in various fields such as energy storage, biomedical, and electronics industries. Its exceptional electrochemical properties make it a highly sought-after material for the development of advanced lithium-ion batteries. The small particle size and high specific surface area of our battery-grade silicon nanopowder make it an excellent candidate for use in the anode of lithium-ion batteries. The high-capacity lithium-ion batteries utilizing silicon nanopowder anodes have the potential to achieve greater energy density and longer cycle life compared to traditional graphite anodes. Furthermore, its high purity and consistent particle size make it a reliable material for battery researchers and manufacturers.

Features and Benefits

This battery-grade silicon nanopowder ensures excellent dispersion within battery electrode formulations due to its small particle size.
  • Superior Dispersion
  • High Specific Surface Area
  • Improved Mechanical Stability
  • Enhanced Performance

Pictograms

Flame

Signal Word

Warning

Hazard Statements

Hazard Classifications

Flam. Sol. 2

Storage Class Code

4.1B - Flammable solid hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Zhenhui Kang et al.
Nanoscale, 3(3), 777-791 (2010-12-17)
Owing to their abundant unique properties and ready compatibility with Si microelectronic technology, Si nanostructures are becoming one of the most important classes of nano semiconductors. Particularly, small-sized Si nanoparticles possess distinctive photoluminescence (PL), biocompatibility, and active surface properties. In
Yuki Kobayashi et al.
Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 19(5), 176-176 (2017-06-06)
Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si
High temperature Boron-based thermoelectric materials
Mori T
Material Matters, 4, 37-37 (2009)
Chengyong Li et al.
Journal of nanoscience and nanotechnology, 13(3), 2272-2275 (2013-06-13)
Mesoporous Si-C-O fibers were fabricated by air activation of a kind of carbon-rich SiC-C fibers at 600 degrees C. The SiC-C fibers were prepared from the hybrid precursor of polycarbosilane and pitch through melt-spinning, air curing and pyrolysis in nitrogen.
Min Joon Huang et al.
Journal of nanoscience and nanotechnology, 13(6), 3810-3817 (2013-07-19)
In this work, we demonstrated a silicon nanowire (SiNW) biosensing platform capable of simultaneously identifying different Dengue serotypes on a single sensing chip. Four peptide nucleic acids (PNAs), specific to each Dengue serotypes (DENV-1 to DENV-4), were spotted on different

Articles

Hydrogen is one of the most important resources in providing food, fuel, and chemical products for our everyday life. Sustainable catalytic hydrogen production from bioethanol has gained significant attention in recent years due to globally diminishing fossil fuel supplies, which have necessitated the search for new chemical feedstocks.

Recent demand for electric and hybrid vehicles, coupled with a reduction in prices, has caused lithium-ion batteries (LIBs) to become an increasingly popular form of rechargeable battery technology.

Silica's versatility spans various industries, including biomedical applications.

Silica's versatility spans various industries, including biomedical applications.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service