Skip to Content
Merck
All Photos(2)

Key Documents

204927

Sigma-Aldrich

Yttrium(III) oxide

greener alternative

99.999% trace metals basis

Synonym(s):

Yttria

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Y2O3
CAS Number:
Molecular Weight:
225.81
EC Number:
MDL number:
UNSPSC Code:
12352303
eCl@ss:
38160202
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.999% trace metals basis

form

powder

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

2410 °C (lit.)

density

5.01 g/mL at 25 °C (lit.)

greener alternative category

SMILES string

O=[Y]O[Y]=O

InChI

1S/3O.2Y

InChI key

SIWVEOZUMHYXCS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency and is intended for Molecular Solar Thermal Energy Storage Systems (MOST). Click here for more information.

Application

  • Yttrium(III) oxide: Employed extensively in the manufacture of yttrium aluminum garnets, which are used in various laser systems. It also serves as a host lattice for phosphor materials used in white LED lighting. Additionally, yttrium oxide is utilized in making glass with high temperature and shock resistance, which is essential for aerospace applications (Sigma-Aldrich, CAS 1314-36-9).

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jiangli Wang et al.
ChemSusChem, 5(7), 1307-1312 (2012-04-03)
Y(2)O(3):Er(3+) nanorods are synthesized by means of a hydrothermal method and then introduced into a TiO(2) electrode in a dye-sensitized solar cell (DSSC). Y(2)O(3):Er(3+) improves infrared light harvest via up-conversion luminescence and increases the photocurrent of the DSSC. The rare
Ian N Stanton et al.
Dalton transactions (Cambridge, England : 2003), 41(38), 11576-11578 (2012-09-04)
We report an upconverting nanomaterial composition, [Y(2)O(3); Yb (2%), Er (1%)], that converts both X-ray and high-fluence NIR irradiation to visible light. This composition is compared to a higher Yb(3+) doped composition, [Y(2)O(3); Yb (10%), Er (1%)], that displays diminished
Cheol Jang et al.
Optics express, 20(3), 2143-2148 (2012-02-15)
We demonstrate the optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm to create a highly efficient emitting layer in mirror-type self-emissive displays. The propagating surface plasmon mode induced between the dielectric layer (MgO) and the Ag nanofilm
Sjoerd A Veldhuis et al.
Langmuir : the ACS journal of surfaces and colloids, 28(42), 15111-15117 (2012-10-04)
Typical surface areas of 5 × 5 mm(2) were patterned with high-aspect-ratio micrometer- and submicrometer-sized structures of yttria-stabilized zirconia using a combination of micromolding in capillaries and sol-gel chemistry. The influence of precursor solution concentration and mold geometry on the
Timur Sh Atabaev et al.
Journal of biomedical materials research. Part A, 100(9), 2287-2294 (2012-04-14)
Increased demand of environment protection encouraged scientists to design products and processes that minimize the use and generation of hazardous substances. This work presents comprehensive result of large-scale fabrication and investigation of red-to-green tunable submicron spherical yttria particles codoped with

Articles

As with all types of fuel cells, a Solid Oxide Fuel Cell (SOFC) is capable of efficiently transforming chemical energy into electrical energy.

Three approaches generate white light, including LED-based down-conversion for broader applications.

Three approaches generate white light, including LED-based down-conversion for broader applications.

Three approaches generate white light, including LED-based down-conversion for broader applications.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service