Skip to Content
Merck
All Photos(1)

Documents

10264

Supelco

Carboxen® Adsorbent

matrix Carboxen® 564, 20-45 mesh, bottle of 10 g

Sign Into View Organizational & Contract Pricing


About This Item

EC Number:
UNSPSC Code:
23201100

product line

Carboxen®

Quality Level

form

powder

packaging

bottle of 10 g

technique(s)

LPLC: suitable

surface area

~400 m2/g

matrix

Carboxen® 564

matrix active group

carbon

particle size

20-45 mesh

pore size

~0.13 cm3/g mesoporosity
~0.14 cm3/g macroporosity
~0.24 cm3/g microporosity
~6-9 Å pore diameter

density

~0.61 g/mL (free fall density)

separation technique

reversed phase

Looking for similar products? Visit Product Comparison Guide

General description

Carboxens are a highly engineered synthetic carbon adsorbent engineered from polymeric precursors. These particles will not plastically deform like resins or generate fines like activated carbon. These materials are shipped and stored dried. These derivatized resins bring value to a wide range of purification applications for removing both small and large molecule impurities. They find use in both gas and liquid phase purifications. Some examples include removal of homogenous catalysts from active pharmaceutical ingredients (API)s, high-risk impurities in biochemical purifications such as host cell proteins from mAbs, removal of toxic heavy metals, purification of chlorinated molecules, and removal of extractables and leachables. Tapered pores result in increased thermodynamic and kinetic properties for both adsorption and desorption. The Carboxens vary in the relative percentage of pore structures (micro, meso, and macro), surface area, and surface pH.

Features and Benefits

Features and Benefits:

  • Spherical
  • Hard (ball pan hardness >98%)
  • Stable up to 400°C
  • High purity
  • Easy to pack
  • Stable over entire pH range
  • Do not create backpressure
  • High osmotic shock stability
  • Tapered pore sizing (from macro- to meso- to micro-)

Other Notes

For more information, please visit: specialty Carbon Adsorbents

Legal Information

Carboxen is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

4.2 - Pyrophoric and self-heating hazardous materials

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

S W Jenkins et al.
Environmental science and pollution research international, 2(4), 207-210 (1995-07-01)
A simple, rapid method for the extraction of N-nitrosodimethylamine (NDMA) from drinking and surface waters was developed using Ambersorb 572. Development of an alternative method to classical liquid-liquid extraction techniques was necessary to handle the workload presented by implementation of
RSC Chromatography Monographs
Pawliszyn J. et al.
Applications of Solid Phase Microextraction, 64-65 (1999)
The effects of temperature and pressure on the performance of Carboxen/PDMS fibres during solid phase microextraction (SPME) of headspace volatiles from cooked and raw turkey breast.
Brunton NP, et al.
Flavour and Fragrance Journal, 16(4), 294-302 (2001)
Frank Sporkert et al.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 772(1), 45-51 (2002-05-23)
A new and in part automated headspace solid-phase microextraction method for quantitative determination of the highly toxic rodenticide fluoroacetic acid (FAA) in serum and other biological samples has been developed. FAA and deuterated acetic acid (internal standard) were extracted from
B D Page et al.
Journal of chromatography. A, 873(1), 79-94 (2000-04-11)
The headspace solid-phase microextraction (HS-SPME) efficiencies from vegetable oil of the recently available Carboxen-poly(dimethylsiloxane) (PDMS) and divinylbenzene-Carboxen-PDMS fibres were found to be much greater than those of the PDMS fibre for a number of volatile contaminants. Using these Carboxen-based fibres

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service