Skip to Content
Merck
All Photos(1)

Documents

10199

Supelco

Carbosieve Carbon Adsorbent

matrix Carbosieve G, 80-100 mesh, bottle of 5 g

Sign Into View Organizational & Contract Pricing


About This Item

EC Number:
UNSPSC Code:
23201100

product name

Carbosieve Adsorbent, matrix Carbosieve G, 80-100 mesh, bottle of 5 g

product line

Carbosieve

Quality Level

form

powder or granules

packaging

bottle of 5 g

technique(s)

LPLC: suitable
gas chromatography (GC): suitable
solid phase extraction (SPE): suitable

surface area

~1160 m2/g

matrix

Carbosieve G

matrix active group

carbon

particle size

80-100 mesh

pore size

~0.02 cm3/g mesoporosity
~0.49 cm3/g microporosity
~0 cm3/g macroporosity
~6-15 Å pore diameter

density

~0.27 g/mL (free fall density)

separation technique

reversed phase

Looking for similar products? Visit Product Comparison Guide

General description

A carbon molecular sieve (CMS) is the porous carbon skeletal framework that remains after pyrolysis of a polymeric precursor. These particles are:
  • Spherical (better packed bed performance than granular particles)
  • Hard and non-friable (pack well, will not break)
  • Highly porous (high surface areas)
  • Used for molecules with an analyte size relative to C2-C5 n-alkanes
  • Hydrophobic (can be used in high humidity environments)

Generally, CMS adsorbents offer greater relative adsorptive strength compared to spherical graphitized polymer carbon (SGPC) and graphitized carbon black (GCB) adsorbents. Our Carbosieve products are a type of CMS adsorbent.
  • Have non-tapered pores
  • Very strong adsorptive strength due to only containing micropores
  • Provide great performance for many small, volatile analytes that most adsorbents have trouble retaining

For more information about any of our specialty carbon adsorbents, please visit sigma-aldrich.com/carbon

Legal Information

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

T D DiStefano et al.
Applied and environmental microbiology, 57(8), 2287-2292 (1991-08-01)
Tetrachloroethene, also known as perchloroethylene (PCE), is a common groundwater contaminant throughout the United States. The incomplete reductive dechlorination of PCE--resulting in accumulations of trichloroethene, dichloroethene isomers, and/or vinyl chloride--has been observed by many investigators in a wide variety of
D R Nelson et al.
Applied microbiology, 28(2), 258-261 (1974-08-01)
A gas chromatographic procedure for the simultaneous analysis of (14)C-labeled and unlabeled metabolic gases from microbial methanogenic systems is described. H(2), CH(4), and CO(2) were separated within 2.5 min on a Carbosieve B column and were detected by thermal conductivity.
Stuart Batterman et al.
Journal of environmental monitoring : JEM, 4(3), 361-370 (2002-07-04)
While air sampling techniques using adsorbent-based collection, thermal desorption and chromatographic analysis have found a niche in ambient air sampling, occupational applications have been more limited. This paper evaluates the use of thermal desorption techniques for low flow active and
Yannick Juillet et al.
The Analyst, 130(6), 977-982 (2005-05-25)
Among the chemicals belonging to the schedules of the Chemical Weapons Convention (CWC), sampling and analysis of highly volatile compounds such as hydrogen cyanide (HCN) require special consideration. The latter is present in numerous old chemical weapons that are stockpiled
Piotr Kowalczyk et al.
Environmental science & technology, 42(8), 2931-2936 (2008-05-24)
Light membranes composed of single-walled carbon nanotubes (SWNTs) can serve as efficient nanoscale vessels for encapsulation of tetrafluoromethane at 300 K and operating external pressure of 1 bar. We use grand canonical Monte Carlo simulation for modeling of CF4 encapsulation

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service