Skip to Content
Merck
All Photos(1)

Key Documents

912379

Sigma-Aldrich

Di-n-Propylammonium iodide

Synonym(s):

1-Propanamine, N-Propyl-, hydriodide (9CI) dipropylamine, DNPRAI, Greatcell Solar®, Hydriodide (8CI) dipropylammonium iodide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C6H16IN
CAS Number:
Molecular Weight:
229.10
MDL number:
UNSPSC Code:
12352101
NACRES:
NA.23

form

powder

Quality Level

color

white

SMILES string

[I-].[N+H2](CCC)CCC

InChI key

OXVTTWZGFRRUCD-UHFFFAOYSA-N

Application

Di-n-Propylammonium iodide can be utilized in the fabrication of lead iodide-based perovskite layers, which serve as light-absorbing and charge transport materials in perovskite solar cells. In addition, DNPAI-based perovskite materials have been explored for applications in LEDs, where they serve as emissive layers.
Organohalide based perovskites have emerged as an important class of material for solar cell applications. The variations/substitution in organohalide cations and anions is employed for the optimization of the band gap, carrier diffusion length, and power conversion efficiency of perovskites based solar cells.

Legal Information

Product of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Systematic studies on chain lengths, halide species, and well thicknesses for lead halide layered perovskite thin films.
Takeoka Y, et al.
Bulletin of the Chemical Society of Japan, 79(10), 1607-1613 (2006)
Limeng Ni et al.
ACS nano, 11(11), 10834-10843 (2017-10-25)
Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we
Qi Zhang et al.
Advanced materials (Deerfield Beach, Fla.), 30(18), e1704055-e1704055 (2018-03-27)
2D organic-inorganic hybrid perovskites (OIHPs) represent a unique class of materials with a natural quantum-well structure and quasi-2D electronic properties. Here, a versatile direct solution-based synthesis of mono- and few-layer OIHP nanosheets and a systematic study of their electronic structure

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service