Saltar al contenido
MilliporeSigma

Overexpression of sphingosine kinase 1 in liver reduces triglyceride content in mice fed a low but not high-fat diet.

Biochimica et biophysica acta (2014-12-10)
Greg M Kowalski, Joachim Kloehn, Micah L Burch, Ahrathy Selathurai, Steven Hamley, Stéphanie A M Bayol, Séverine Lamon, Matthew J Watt, Robert S Lee-Young, Malcolm J McConville, Clinton R Bruce
RESUMEN

Hepatic insulin resistance is a major risk factor for the development of type 2 diabetes and is associated with the accumulation of lipids, including diacylglycerol (DAG), triacylglycerols (TAG) and ceramide. There is evidence that enzymes involved in ceramide or sphingolipid metabolism may have a role in regulating concentrations of glycerolipids such as DAG and TAG. Here we have investigated the role of sphingosine kinase (SphK) in regulating hepatic lipid levels. We show that mice on a high-fat high-sucrose diet (HFHS) displayed glucose intolerance, elevated liver TAG and DAG, and a reduction in total hepatic SphK activity. Reduced SphK activity correlated with downregulation of SphK1, but not SphK2 expression, and was not associated with altered ceramide levels. The role of SphK1 was further investigated by overexpressing this isoform in the liver of mice in vivo. On a low-fat diet (LFD) mice overexpressing liver SphK1, displayed reduced hepatic TAG synthesis and total TAG levels, but with no change to DAG or ceramide. These mice also exhibited no change in gluconeogenesis, glycogenolysis or glucose tolerance. Similarly, overexpression of SphK1 had no effect on the pattern of endogenous glucose production determined during a glucose tolerance test. Under HFHS conditions, normalization of liver SphK activity to levels observed in LFD controls did not alter hepatic TAG concentrations. Furthermore, DAG, ceramide and glucose tolerance were also unaffected. In conclusion, our data suggest that SphK1 plays an important role in regulating TAG metabolism under LFD conditions.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Pyridine, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetona, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Cloruro de sodio, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Pyridine, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Supelco
N,O-bis(trimetilsilil)trifluoroacetamida con trimetilclorosilano, with 1% trimethylchlorosilane, for GC derivatization, LiChropur
Sigma-Aldrich
Clorotrimetilsilano, ≥98.0% (GC)
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetona, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Pyridine, ReagentPlus®, ≥99%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Clorotrimetilsilano, purified by redistillation, ≥99%
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
N,O-bis(trimetilsilil)trifluoroacetamida, ≥99%
Sigma-Aldrich
Cloruro de sodio, JIS special grade, ≥99.5%
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Cloruro de sodio, 99.999% trace metals basis
Sigma-Aldrich
Cloruro de sodio, BioUltra, for molecular biology, ≥99.5% (AT)
USP
Acetona, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
Acetona, histological grade, ≥99.5%
Sigma-Aldrich
Acetona, JIS special grade, ≥99.5%
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetona, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)