Skip to Content
MilliporeSigma

A behavioral odor similarity "space" in larval Drosophila.

Chemical senses (2011-01-14)
Yi-chun Chen, Dushyant Mishra, Linda Schmitt, Michael Schmuker, Bertram Gerber
ABSTRACT

To provide a behavior-based estimate of odor similarity in larval Drosophila, we use 4 recognition-type experiments: 1) We train larvae to associate an odor with food and then test whether they would regard another odor as the same as the trained one. 2) We train larvae to associate an odor with food and test whether they prefer the trained odor against a novel nontrained one. 3) We train larvae differentially to associate one odor with food, but not the other one, and test whether they prefer the rewarded against the nonrewarded odor. 4) In an experiment like (3), we test the larvae after a 30-min break. This yields a combined task-independent estimate of perceived difference between odor pairs. Comparing these perceived differences to published measures of physicochemical difference reveals a weak correlation. A notable exception are 3-octanol and benzaldehyde, which are distinct in published accounts of chemical similarity and in terms of their published sensory representation but nevertheless are consistently regarded as the most similar of the 10 odor pairs employed. It thus appears as if at least some aspects of olfactory perception are "computed" in postreceptor circuits on the basis of sensory signals rather than being immediately given by them.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-(+)-Fructose, ≥97.0% (HPLC)