Skip to Content
MilliporeSigma
  • Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress.

Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress.

Applied microbiology and biotechnology (2015-01-27)
Yanfen Fu, Jong Moon Yoon, Laura Jarboe, Jacqueline V Shanks
ABSTRACT

Systems metabolic engineering has made the renewable production of industrial chemicals a feasible alternative to modern operations. One major example of a renewable process is the production of carboxylic acids, such as octanoic acid (C8), from Escherichia coli, engineered to express thioesterase enzymes. C8, however, is toxic to E. coli above a certain concentration, which limits the final titer. (13)C metabolic flux analysis of E. coli was performed for both C8 stress and control conditions using NMR2Flux with isotopomer balancing. A mixture of labeled and unlabeled glucose was used as the sole carbon source for bacterial growth for (13)C flux analysis. By comparing the metabolic flux maps of the control condition and C8 stress condition, pathways that were altered under the stress condition were identified. C8 stress was found to reduce carbon flux in several pathways: the tricarboxylic acid (TCA) cycle, the CO2 production, and the pyruvate dehydrogenase pathway. Meanwhile, a few pathways became more active: the pyruvate oxidative pathway, and the extracellular acetate production. These results were statistically significant for three biological replicates between the control condition and C8 stress. As a working hypothesis, the following causes are proposed to be the main causes for growth inhibition and flux alteration for a cell under stress: membrane disruption, low activity of electron transport chain, and the activation of the pyruvate dehydrogenase regulator (PdhR).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium trichloroacetate, 97%
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt