Skip to Content
MilliporeSigma
  • Genetic Interaction between Lyn, Ets1, and Btk in the Control of Antibody Levels.

Genetic Interaction between Lyn, Ets1, and Btk in the Control of Antibody Levels.

Journal of immunology (Baltimore, Md. : 1950) (2015-07-26)
Jessica Mayeux, Brian Skaug, Wei Luo, Lisa M Russell, Shinu John, Prontip Saelee, Hansaa Abbasi, Quan-Zhen Li, Lee Ann Garrett-Sinha, Anne B Satterthwaite
ABSTRACT

Tight control of B cell differentiation into plasma cells (PCs) is critical for proper immune responses and the prevention of autoimmunity. The Ets1 transcription factor acts in B cells to prevent PC differentiation. Ets1(-/-) mice accumulate PCs and produce autoantibodies. Ets1 expression is downregulated upon B cell activation through the BCR and TLRs and is maintained by the inhibitory signaling pathway mediated by Lyn, CD22 and SiglecG, and SHP-1. In the absence of these inhibitory components, Ets1 levels are reduced in B cells in a Btk-dependent manner. This leads to increased PCs, autoantibodies, and an autoimmune phenotype similar to that of Ets1(-/-) mice. Defects in inhibitory signaling molecules, including Lyn and Ets1, are associated with human lupus, although the effects are more subtle than the complete deficiency that occurs in knockout mice. In this study, we explore the effect of partial disruption of the Lyn/Ets1 pathway on B cell tolerance and find that Lyn(+/-)Ets1(+/-) mice demonstrate greater and earlier production of IgM, but not IgG, autoantibodies compared with Lyn(+/-) or Ets1(+/-) mice. We also show that Btk-dependent downregulation of Ets1 is important for normal PC homeostasis when inhibitory signaling is intact. Ets1 deficiency restores the decrease in steady state PCs and Ab levels observed in Btk(-/-) mice. Thus, depending on the balance of activating and inhibitory signals to Ets1, there is a continuum of effects on autoantibody production and PC maintenance. This ranges from full-blown autoimmunity with complete loss of Ets1-maintaining signals to reduced PC and Ab levels with impaired Ets1 downregulation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phosphatase substrate, powder
Sigma-Aldrich
Phosphatase substrate, 40 mg capsules
Sigma-Aldrich
Phosphatase substrate, 40 mg tablets
Sigma-Aldrich
Phosphatase substrate, 100 mg capsules
Sigma-Aldrich
Phosphatase substrate, 5 mg tablets
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, suitable for enzyme immunoassay, ≥99.0% (enzymatic)
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, tablet
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, tablet
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, tablet
Sigma-Aldrich
Phosphatase substrate, Suitable for manufacturing of diagnostic kits and reagents
Sigma-Aldrich
5(6)-Carboxyfluorescein diacetate N-succinimidyl ester, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
5-Carboxy-fluorescein diacetate N-succinimidyl ester, for fluorescence, ≥95.0% (HPLC)
Sigma-Aldrich
N,O-Bis(trimethylsilyl)acetamide, synthesis grade, ≥95%
Sigma-Aldrich
TNP, ≥95% (HPLC)
Sigma-Aldrich
Creatinine, anhydrous, ≥98%
Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse