Skip to Content
MilliporeSigma
  • Evaluation of cynomolgus monkeys for the identification of endogenous biomarkers for hepatic transporter inhibition and as a translatable model to predict pharmacokinetic interactions with statins in humans.

Evaluation of cynomolgus monkeys for the identification of endogenous biomarkers for hepatic transporter inhibition and as a translatable model to predict pharmacokinetic interactions with statins in humans.

Drug metabolism and disposition: the biological fate of chemicals (2015-03-31)
Xiaoyan Chu, Shian-Jiun Shih, Rachel Shaw, Hannes Hentze, Grace H Chan, Karen Owens, Shubing Wang, Xiaoxin Cai, Deborah Newton, Jose Castro-Perez, Gino Salituro, Jairam Palamanda, Aaron Fernandis, Choon Keow Ng, Andy Liaw, Mary J Savage, Raymond Evers
ABSTRACT

Inhibition of hepatic transporters such as organic anion transporting polypeptides (OATPs) 1B can cause drug-drug interactions (DDIs). Determining the impact of perpetrator drugs on the plasma exposure of endogenous substrates for OATP1B could be valuable to assess the risk for DDIs early in drug development. As OATP1B orthologs are well conserved between human and monkey, we assessed in cynomolgus monkeys the endogenous OATP1B substrates that are potentially suitable to assess DDI risk in humans. The effect of rifampin (RIF), a potent inhibitor for OATP1B, on plasma exposure of endogenous substrates of hepatic transporters was measured. From the 18 biomarkers tested, RIF (18 mg/kg, oral) caused significant elevation of plasma unconjugated and conjugated bilirubin, which may be attributed to inhibition of cOATP1B1 and cOATP1B3 based on in vitro to in vivo extrapolation analysis. To further evaluate whether cynomolgus monkeys are a suitable translational model to study OATP1B-mediated DDIs, we determined the inhibitory effect of RIF on in vitro transport and pharmacokinetics of rosuvastatin (RSV) and atorvastatin (ATV). RIF strongly inhibited the uptake of RSV and ATV by cOATP1B1 and cOATP1B3 in vitro. In agreement with clinical observations, RIF (18 mg/kg, oral) significantly decreased plasma clearance and increased the area under the plasma concentration curve (AUC) of intravenously administered RSV by 2.8- and 2.7-fold, and increased the AUC and maximum plasma concentration of orally administered RSV by 6- and 10.3-fold, respectively. In contrast to clinical findings, RIF did not significantly increase plasma exposure of either intravenous or orally administered ATV, indicating species differences in the rate-limiting elimination pathways.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Golgicide A, ≥98% (HPLC)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Cyclosporin A, 97.0-101.5% (on dried basis)
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Uridine, BioUltra, ≥99%
Sigma-Aldrich
Uridine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Cyclosporin A, from Tolypocladium inflatum, ≥95% (HPLC), solid
Sigma-Aldrich
Cholic acid, from bovine and/or ovine, ≥98%
Sigma-Aldrich
Lithocholic acid, ≥95%
Sigma-Aldrich
Chenodeoxycholic acid
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%