Skip to Content
MilliporeSigma
  • Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.

Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.

International journal of pharmaceutics (2014-12-03)
Deepak Yadav, Neeraj Kumar
ABSTRACT

The present work aims to investigate applicability of antisolvent precipitation method for preparation of nanosized curcumin and to control their characteristics by determining the influence of process and solvents on solid-state properties of curcumin nanoparticles. Effects of different experimental parameters on particle size were investigated using dynamic light scattering. Particle morphology was studied using SEM. Drug content in stabilized nanoparticles was determined using HPLC. Residual moisture content after lyophilisation was determined using Karl Fischer method and solid state properties were investigated using DSC, TGA, FTIR and powder-XRD. The resulting product showed a high drug load and contained the drug in amorphous form. The particle diameters of prepared curcumin nanoparticles were found in the range of 100-200 nm. In vitro drug release studies indicated a sustained release profile of curcumin from the nanoparticles. Antisolvent precipitation produced amorphous curcumin nanoparticles whose size and morphology could be controlled using gelatine as stabilizer. Lyophilized curcumin nanoparticles with d-sorbitol as lyoprotectant possessed good redispersibility and showed up to 4 times faster in vitro curcumin release rate than that of unprocessed curcumin. Stability tests (at 2-8°C and ambient conditions) indicated that the product was stable for up to 6 months of storage.

MATERIALS
Product Number
Brand
Product Description

Supelco
Potassium hydroxide concentrate, 0.1 M KOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Supelco
Sorbitol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
D-Sorbitol, liquid, tested according to Ph. Eur.
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, contains no stabilizer
Sigma-Aldrich
D-Sorbitol, BioUltra, ≥99.0% (HPLC)
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
D-Sorbitol, FCC, FG
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Supelco
Tetrahydrofuran, analytical standard
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Supelco
Methanol, analytical standard
Sigma-Aldrich
D-Sorbitol, 99% (GC)
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Sorbitol F solution, 70 wt. % in H2O, Contains mainly D-sorbitol with lesser amounts of other hydrogenated oligosaccharides
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
D-Sorbitol, ≥98% (GC)