Skip to Content
Merck
  • Stimulation of gene transfection by silicon nanowire arrays modified with polyethylenimine.

Stimulation of gene transfection by silicon nanowire arrays modified with polyethylenimine.

ACS applied materials & interfaces (2014-07-18)
Jingjing Pan, Zhonglin Lyu, Wenwen Jiang, Hongwei Wang, Qi Liu, Min Tan, Lin Yuan, Hong Chen
ABSTRACT

In this work, a novel gene delivery strategy was proposed based on silicon nanowire arrays modified with high-molecular-weight 25 kDa branched polyethylenimine (SN-PEI). Both the plasmid DNA (pDNA) binding capacity and the in vitro gene transfection efficiency of silicon nanowire arrays (SiNWAs) were significantly enhanced after modification with high-molecular-weight bPEI. Moreover, the transfection efficiency was substantially further increased by the introduction of free pDNA/PEI complexes formed by low-molecular-weight branched PEI (bPEI, 2 kDa). Additionally, factors affecting the in vitro transfection efficiency of the novel gene delivery system were investigated in detail, and the transfection efficiency was optimized on SN-PEI with a bPEI grafting time of 3 h, an incubation time of 10 min for tethered pDNA/PEI complexes consisting of high-molecular-weight bPEI grafted onto SiNWAs, and with an N/P ratio of 80 for free pDNA/PEI complexes made of low-molecular-weight bPEI. Together, our results indicate that high-molecular-weight bPEI modified SiNWAs can serve as an efficient platform for gene delivery.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98.0%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, 99%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, packaged for use in deposition systems, ≥98%
Sigma-Aldrich
4-Nitrophenyl chloroformate, 96%