Skip to Content
MilliporeSigma
  • Correlation between in vitro complement deposition and passive mouse protection of anti-pneumococcal surface protein A monoclonal antibodies.

Correlation between in vitro complement deposition and passive mouse protection of anti-pneumococcal surface protein A monoclonal antibodies.

Clinical and vaccine immunology : CVI (2014-11-21)
Naeem Khan, Raies Ahmad Qadri, Devinder Sehgal
ABSTRACT

The shortcomings of the licensed polysaccharide-based pneumococcal vaccine are driving efforts toward development of a protein-based vaccine that is serotype independent and effective in all age groups. An opsonophagocytic killing assay (OPKA) is used to evaluate the antibody response against polysaccharide-based pneumococcal vaccines. However, the OPKA is not reliable for noncapsular antigens. Thus, there is a need to develop an in vitro surrogate for protection for protein vaccine candidates like pneumococcal surface antigen A (PspA). PspA is a serologically variable cell surface virulence factor. Based on its sequence, PspA has been classified into families 1 (clade 1 and 2), 2 (clades 3, 4 and 5), and 3 (clade 6). Here, we report the characterization of 18 IgG anti-PspA monoclonal antibodies (anti-PspA(hkR36A) MAbs) generated from mice immunized with heat-killed strain R36A (clade 2). An enzyme-linked immunosorbent assay (ELISA)-based analysis of the reactivity of the MAbs with recombinant PspAs from the 6 clades indicated that they were family 1 specific. This was confirmed by flow cytometry using a hyperimmune serum generated against PspA from R36A. Eight MAbs that bind at least one clade 1- and clade 2-expressing strain were evaluated for complement deposition, bactericidal activity, and passive protection. The anti-PspA(hkR36A) MAb-dependent deposition of complement on pneumococci showed a positive correlation with passive protection against strain WU2 (r = 0.8783, P = 0.0041). All of our protective MAbs showed bactericidal activity; however, not all MAbs that exhibited bactericidal activity conferred protection in vivo. The protective MAbs described here can be used to identify conserved protection eliciting B cell epitopes for engineering a superior PspA-based vaccine.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Aluminum potassium sulfate dodecahydrate, BioReagent, suitable for insect cell culture
Sigma-Aldrich
Aluminum potassium sulfate dodecahydrate, BioXtra, ≥98.0%
Sigma-Aldrich
Aluminum potassium sulfate dodecahydrate, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5%
Sigma-Aldrich
Aluminum potassium sulfate dodecahydrate, ACS reagent, ≥98%
Supelco
N,O-Bis(trimethylsilyl)acetamide, for GC derivatization, LiChropur, ≥98.5% (GC)
Sigma-Aldrich
N,O-Bis(trimethylsilyl)acetamide, synthesis grade, ≥95%