Skip to Content
MilliporeSigma
  • Application of fluorescent nanoparticles to study remodeling of the endo-lysosomal system by intracellular bacteria.

Application of fluorescent nanoparticles to study remodeling of the endo-lysosomal system by intracellular bacteria.

Journal of visualized experiments : JoVE (2015-01-16)
Yuying Zhang, Viktoria Krieger, Michael Hensel
ABSTRACT

Fluorescent nanoparticles (NPs) with desirable chemical, optical and mechanical properties are promising tools to label intracellular organelles. Here, we introduce a method using gold-BSA-rhodamine NPs to label the endo-lysosomal system of eukaryotic cells and monitor manipulations of host cellular pathways by the intracellular pathogen Salmonella enterica. The NPs were readily internalized by HeLa cells and localized in late endosomes/lysosomes. Salmonella infection induced rearrangement of the vesicles and accumulation of NPs in Salmonella-induced membrane structures. We deployed the Imaris software package for quantitative analyses of confocal microscopy images. The number of objects and their size distribution in non-infected cells were distinct from the ones in Salmonella-infected cells, indicating extremely remodeling of the endo-lysosomal system by WT Salmonella.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gold, beads, 1-6 mm, 99.999% trace metals basis
Sigma-Aldrich
Gold, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 1.0 mm, 99.997% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, powder, <45 μm, 99.99% trace metals basis
Sigma-Aldrich
Gold, rod, diam. 3.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.1 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.05 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.5 mm, 99.99% trace metals basis
Gold, insulated wire, 2m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.05μm, specific density 101.3μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, rod, 100mm, diameter 2.0mm, as drawn, 99.95%
Gold, microfoil, disks, 10mm, thinness 0.1μm, specific density 204.1μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, tube, 50mm, outside diameter 8mm, inside diameter 7.8mm, wall thickness 0.1mm, as drawn, 99.95%
Gold, tube, 100mm, outside diameter 1.60mm, inside diameter 0.6mm, wall thickness 0.5mm, as drawn, 99.95%
Gold, tube, 200mm, outside diameter 2.0mm, inside diameter 1.8mm, wall thickness 0.1mm, as drawn, 99.95%
Gold, rod, 6mm, diameter 6.0mm, as drawn, 99.95%
Gold, rod, 10mm, diameter 6.0mm, as drawn, 99.95%
Gold, tube, 100mm, outside diameter 3.0mm, inside diameter 2.8mm, wall thickness 0.10mm, as drawn, 99.95%
Gold, tube, 100mm, outside diameter 10.0mm, inside diameter 9.7mm, wall thickness 0.15mm, as drawn, 99.95%
Gold, tube, 200mm, outside diameter 2.0mm, inside diameter 1.7mm, wall thickness 0.15mm, as drawn, 99.95%
Gold, insulated wire, 2m, conductor diameter 0.125mm, insulation thickness 0.014mm, polyester insulation, 99.99%
Gold, insulated wire, 0.5m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, insulated wire, 0.1m, conductor diameter 0.125mm, insulation thickness 0.016mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.5μm, specific density 966μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, insulated wire, 1m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyimide insulation, 99.99%