Skip to Content
MilliporeSigma
  • Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis.

Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis.

The Biochemical journal (2014-07-26)
Mark A Hooks, J William Allwood, Joanna K D Harrison, Joachim Kopka, Alexander Erban, Royston Goodacre, Janneke Balk
ABSTRACT

Arabidopsis thaliana has three genes that encode distinct aconitases (ACO), but little is known about the function of each isoenzyme during plant development. In newly emerged seedlings of Arabidopsis, transcript and protein levels for ACO3 were selectively induced to yield more than 80% of total aconitase activity. Characterization of knockout mutants for each of the three ACOs suggests a major role for only ACO3 in citrate metabolism. The aco3 mutant showed delayed early seedling growth, altered assimilation of [14C]acetate feeding and elevated citrate levels, which were nearly 4-fold greater than in wild-type, aco1 or aco2. However, both ACO1 and ACO2 are active in seedlings as shown by inhibition of aco3 growth by the toxin monofluoroacetate, and altered [14C]acetate assimilation and metabolite levels in aco1 and aco2. Relative levels of fumarate and malate differed between aco2 and aco3, indicating metabolically isolated pools of these metabolites in seedlings. Our inability to enrich ACO protein through mitochondria isolation, and the reduced cytosolic ACO activity of the iron-sulfur centre assembly mutant atm3-1, indicated a cytosolic localization of ACO3 in 3-day-old seedlings. Subsequently, we determined that more than 90% of ACO3 was cytosolic. We conclude that ACO3 is cytosolic in young seedlings and functions in citrate catabolism consistent with the operation of the classic glyoxylate and not direct catabolism of citrate within mitochondria.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glyoxylic acid solution, 50 wt. % in H2O
Sigma-Aldrich
Aconitase from porcine heart
Supelco
Citric acid, Anhydrous, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Citric acid, SAJ first grade, ≥99.5%
Sigma-Aldrich
Citric acid, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Citric acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Citric acid, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Citric acid, 99%
Citric acid, anhydrous, European Pharmacopoeia (EP) Reference Standard
Supelco
Citric acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Citric acid, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
Citric acid, meets analytical specification of Ph. Eur., BP, USP, E330, anhydrous, 99.5-100.5% (based on anhydrous substance)
USP
Citric acid, United States Pharmacopeia (USP) Reference Standard