Skip to Content
MilliporeSigma
  • Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.

Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.

Experimental physiology (2008-07-01)
K T Murphy, O B Nielsen, T Clausen
ABSTRACT

We aimed to quantify the Na(+)-K(+) exchange occurring during exercise in rat skeletal muscle in vivo. Intracellular Na(+) and K(+) content, Na(+) permeability ((22)Na(+) influx), Na(+)-K(+) pump activity (ouabain-sensitive (86)Rb(+) uptake) and Na(+)-K(+) pump alpha(2) subunit content ([(3)H]ouabain binding) were measured. Six-week-old rats rested (control animals) or performed intermittent running for 10-60 min and were then killed or were killed at 15 or 90 min following 60 min exercise. In the soleus muscle, intracellular Na(+) was 80% higher than in control rats after 60 min exercise, was still elevated (38%) after 15 min rest and returned to control levels after 90 min rest. Intracellular K(+) showed corresponding decreases after 15-60 min exercise, returning to control levels 90 min postexercise. Exercise induced little change in Na(+) and K(+) in the extensor digitorum longus muscle (EDL). In soleus, the exercise-induced rise in Na(+) and reduction in K(+) were augmented by pretreatment with ouabain or by reducing the content of muscular Na(+)-K(+) pumps by prior K(+) depletion of the animals. Fifteen minutes after 60 min exercise, ouabain-sensitive (86)Rb(+) uptake in the soleus was increased by 30% but was unchanged in EDL, and there was no effect of exercise on [(3)H]ouabain binding measured in vitro or in vivo in either muscle. In conclusion, in the soleus, in vivo exercise induces a rise in intracellular Na(+), which reflects the excitation-induced increase in Na(+) influx and leads to augmented Na(+)-K(+) pump activity without apparent change in Na(+)-K(+) pump capacity.