Skip to Content
MilliporeSigma
  • CG hypomethylation in Lsh-/- mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity.

CG hypomethylation in Lsh-/- mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity.

Proceedings of the National Academy of Sciences of the United States of America (2014-04-09)
Weishi Yu, Victorino Briones, Ryan Lister, Carl McIntosh, Yixing Han, Eunice Y Lee, Jianke Ren, Minoru Terashima, Robert M Leighty, Joseph R Ecker, Kathrin Muegge
ABSTRACT

DNA methylation patterns are established in early embryogenesis and are critical for cellular differentiation. To investigate the role of CG methylation in potential enhancer formation, we assessed H3K4me1 modification in murine embryonic fibroblasts (MEFs) derived from the DNA methylation mutant Lsh(-/-) mice. We report here de novo formation of putative enhancer elements at CG hypomethylated sites that can be dynamically altered. We found a subset of differentially enriched H3K4me1 regions clustered at neuronal lineage genes and overlapping with known cis-regulatory elements present in brain tissue. Reprogramming of Lsh(-/-) MEFs into induced pluripotent stem (iPS) cells leads to increased neuronal lineage gene expression of premarked genes and enhanced differentiation potential of Lsh(-/-) iPS cells toward the neuronal lineage pathway compared with WT iPS cells in vitro and in vivo. The state of CG hypomethylation and H3K4me1 enrichment is partially maintained in Lsh(-/-) iPS cells. The acquisition of H3K27ac and activity of subcloned fragments in an enhancer reporter assay indicate functional activity of several of de novo H3K4me1-marked sequences. Our results suggest a functional link of H3K4me1 enrichment at CG hypomethylated sites, enhancer formation, and cellular plasticity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Lysine, crystallized, ≥98.0% (NT)
Sigma-Aldrich
L-Lysine acetate salt, ≥98% (HPLC)
Sigma-Aldrich
L-Lysine, ≥98% (TLC)
Lysine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Lysine, analytical standard
Lysine acetate, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Lysine monohydrochloride, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
L-Lysine monohydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Lysine monohydrochloride, SAJ special grade, ≥99.0%
Supelco
L-Lysine Acetate, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)