Skip to Content
MilliporeSigma

Staphylococcus aureus fatty acid auxotrophs do not proliferate in mice.

Antimicrobial agents and chemotherapy (2013-08-28)
Joshua B Parsons, Matthew W Frank, Jason W Rosch, Charles O Rock
ABSTRACT

Inactivation of acetyl-coenzyme A (acetyl-CoA) carboxylase confers resistance to fatty acid synthesis inhibitors in Staphylococcus aureus on media supplemented with fatty acids. The addition of anteiso-fatty acids (1 mM) plus lipoic acid supports normal growth of ΔaccD strains, but supplementation with mammalian fatty acids was less efficient. Mice infected with strain RN6930 developed bacteremia, but bacteria were not detected in mice infected with its ΔaccD derivative. S. aureus bacteria lacking acetyl-CoA carboxylase can be propagated in vitro but were unable to proliferate in mice, suggesting that the acquisition of inactivating mutations in this enzyme is not a mechanism for the evasion of fatty acid synthesis inhibitors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetyl-CoA carboxylase 2 human, recombinant, expressed in Sf9 cells
Sigma-Aldrich
Acetyl-CoA Carboxylase 1 human, recombinant, expressed in Sf9 cells