- Intra-individual comparison of p-[123I]-iodo-L-phenylalanine and L-3-[123I]-iodo-alpha-methyl-tyrosine for SPECT imaging of gliomas.
Intra-individual comparison of p-[123I]-iodo-L-phenylalanine and L-3-[123I]-iodo-alpha-methyl-tyrosine for SPECT imaging of gliomas.
Radioactive amino-acids accumulate in gliomas even with an intact blood-brain-barrier. L-3-[(123)I]-iodo-alpha-methyl-tyrosine (IMT) is well established for SPECT imaging of gliomas. Recently, we introduced p-[(123)I]-iodo-L-phenylalanine (IPA) for the characterisation of brain lesions. This study compares both tracers in glioma patients. Eleven patients with gliomas (1 WHO grade 1, 5 grade 2, 1 grade 3, 2 grade 4 gliomas, 1 unconfirmed upgrading and 1 post-therapeutic non-neoplastic lesion) underwent SPECT imaging with IPA (early and delayed acquisitions at 30 min and 3 h) and IMT (early only). Maximum tumour-to-brain ratios (TBR) were calculated using region-of-interest analysis to assess uptake of IMT and IPA. Imaging results were compared to histopathological findings. Early TBRs of IMT and IPA were strongly correlated (r = 0.828, p = 0.002). TBRs were higher for IMT than IPA (1.95+/-0.50 versus 1.79+/-0.42; p < 0.05), but independent from tumour cell density (p > 0.1). Visual interpretation by different observers was more concordant for IMT-SPECT than IPA-SPECT (kappa 1.0 versus 0.774). No differences in early TBRs were observed between low-grade and high-grade gliomas for IMT (1.97+/-0.53 versus 2.21+/-0.44, p > 0.5) or IPA (1.70+/-0.23 versus 2.21+/-0.56, p = 0.167) with a trend to higher TBRs in low-grade tumours for IMT (p = 0.093). In contrast to the known wash-out of IMT, we observed persistent accumulation of IPA in gliomas. IPA shows lower TBRs than IMT, especially in low-grade tumours, so IMT should be preferred for the delineation of low-grade gliomas by SPECT imaging. Due to its prolonged retention, however, IPA remains promising for therapeutic use in gliomas after labelling with I-131.