Skip to Content
MilliporeSigma
  • Chemical modifications of Bacillus subtilis tryptophanyl-tRNA synthetase.

Chemical modifications of Bacillus subtilis tryptophanyl-tRNA synthetase.

Biochemistry and cell biology = Biochimie et biologie cellulaire (1997-01-01)
H Xue, Y Xue, S Doublié, C W Carter
ABSTRACT

A concerted conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase (TrpRS) was evident from previous fluorescence on the quenching of the single Trp residue Trp-92 in the 4FTrp-AMP complexed enzyme. In this study, chemical modifications of the B. subtilis TrpRS were employed to further characterize this conformational change, with the single Trp residue serving as a marker for monitoring the change. Modifications of the enzyme by means of the Trp-specific agent N-bromosuccinimide (NBS) or 3-bromo-3-methyl-2-(2-nitrophenylmercapto)-3H-indole (BNPS-skatole) inactivated the enzyme in accord with the essential role of Trp-92, as identified previously by site-directed mutagenesis. ATP sensitized TrpRS toward inactivation by NBS and BNPS-skatole, which suggested a conformational change that resulted in greater accessibility of Trp-92 toward modifications. In contrast, the cognate tRNATrp substrate exerted a specific protective effect against inactivation by both of the reagents, indicating that the TrpRS-tRNATrp interaction reduces the accessibility of Trp-92 under our experimental conditions. By comparison, modification of sulfhydryl groups by means of iodoacetamide did not reduce TrpRS activity. Observations on Trp-specific modification and substrate protection effects are discussed in the context of the Bacillus stearothermophilus TrpRS crystal structure.