Skip to Content
MilliporeSigma
  • Biosynthesis of monoterpenes. Stereochemistry of the enzymatic cyclization of geranyl pyrophosphate to (-)-endo-fenchol.

Biosynthesis of monoterpenes. Stereochemistry of the enzymatic cyclization of geranyl pyrophosphate to (-)-endo-fenchol.

The Journal of biological chemistry (1988-10-25)
R Croteau, D M Satterwhite, C J Wheeler, N M Felton
ABSTRACT

The conversion of geranyl pyrophosphate to (-)-endo-fenchol is considered to proceed by the initial isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this bound intermediate. Incubation of (1R)-[2-14C,1-3H]- and (1S)-[2-14C,1-3H]geranyl pyrophosphate with a preparation of (-)-endo-fenchol cyclase (synthase) from common fennel (Foeniculum vulgare) gave labeled product of unchanged 3H:14C ratio in both cases, and each was dehydrated to a mixture of alpha- and beta-fenchene which were oxidized to the corresponding alpha- and beta-fenchocamphorones, again without change in isotope ratio. The location of the tritium label was deduced in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogen of the derived ketone. The findings indicated that the configuration at C1 of the substrate was retained in the enzymatic transformation to (-)-endo-fenchol which is entirely consistent with the syn-isomerization of geranyl pyrophosphate to (3R)-linalyl pyrophosphate and cyclization of the latter via the anti-endo-conformer. These absolute stereochemical elements of the reaction sequence were confirmed by the enzymatic conversion of (3R)-1Z-[1-3H]linalyl pyrophosphate to (-)-endo-fenchol and by the location of the tritium in the derived fenchocamphorones as before. The summation of the results fully defines the overall stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to (-)-endo-fenchol.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Fenchyl alcohol, ≥96%, FG