Skip to Content
MilliporeSigma
  • Non-linear effects of macromolecular crowding on enzymatic activity of multi-copper oxidase.

Non-linear effects of macromolecular crowding on enzymatic activity of multi-copper oxidase.

Biochimica et biophysica acta (2009-11-26)
Irina Pozdnyakova, Pernilla Wittung-Stafshede
ABSTRACT

Enzymes catalyze biochemical reactions in highly crowded environments where the amount of macromolecules may occupy up to 40% of the volume. Here we report how cell-like conditions tune catalytic parameters for the monomeric multi-copper oxidase, Saccharomyces cerevisiae Fet3p, in vitro. At low amounts of crowding agent, we detect increases in both of K(M) (weaker substrate binding) and k(cat) (improved catalytic efficiency), whereas at higher crowding levels, both parameters were reduced. Presence of crowding agents does not affect Fet3p structural content but increases thermal resistance. The observations are compatible with ordering of a non-optimal substrate-binding site and restricted internal dynamics as a result of excluded volume effects making the protein less structurally 'strained'.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
o-Dianisidine dihydrochloride, Suitable for use in glucose determination
Pricing and availability is not currently available.
Sigma-Aldrich
o-Dianisidine dihydrochloride, ≥95%
Pricing and availability is not currently available.
Sigma-Aldrich
o-Dianisidine dihydrochloride, tablet, 10 mg substrate per tablet
Pricing and availability is not currently available.
Sigma-Aldrich
o-Dianisidine, peroxidase substrate
Pricing and availability is not currently available.
Supelco
o-Dianisidine, for spectrophotometric det. of Au, NO2-, Ce(IV), for the detection of Au, Co, Cu, SCN-, V, ≥97.0%
Pricing and availability is not currently available.