Skip to Content
MilliporeSigma
  • Comparative study on the enantiomer separation of 1,1'-binaphthyl-2,2'diyl hydrogenphosphate and 1,1'-bi-2-naphthol by liquid chromatography and capillary electrophoresis using single and combined chiral selector systems.

Comparative study on the enantiomer separation of 1,1'-binaphthyl-2,2'diyl hydrogenphosphate and 1,1'-bi-2-naphthol by liquid chromatography and capillary electrophoresis using single and combined chiral selector systems.

Journal of chromatography. A (2002-11-29)
Anna Bielejewska, Kazimiera Duszczyk, Arkadiusz Kwaterczak, Danuta Sybilska
ABSTRACT

The chiral recognition ability of single and dual selectors, that were used as additives, have been investigated by HPLC and CE. Native beta- and gamma-cyclodextrins, permethylated beta-cyclodextrin, hydroxypropyl-beta-cyclodextrin, cholic acid and taurodeoxycholic acid sodium salts were applied as chiral selectors, whereas the atropisomers of 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate, and 1,1'-bi-2-naphthol served as model compounds. It was found that all investigated selectors, except for gamma-cyclodextrin, display the same affinity pattern for binaphthyl enantiomers, i.e., binding the S more strongly than the R enantiomer. However, the differences in the phase distribution of chiral selectors led to the opposit elution order of enantiomers: with cyclodextrins, the first eluted is S enantiomer, while R is the first eluted for bile salts. Under the conditions studied, cyclodextrins (except gamma-cyclodextrin), as well as cholic acid sodium salts acting singly, enable the separation of 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate enantiomers both by HPLC and CE methods, while 1,1'-bi-2-naphthol enantiomers were resolved only under CE conditions with permethylated cyclodextrin or bile salts. In both techniques the application of dual systems could improve resolution or make it worse (oreven cancel), depending on the sign of enantioselectivity of particular selectors, their concentrations and localization: mobile or stationary phase. It has been found that the mechanism of separation as well as interactions occurring between two selectors may be followed by using combined HPLC and CE methods. The obtained results proved that, as well as beta-CD, TM-beta-D and gamma-CD also form inclusion complexes with cholic acid sodium salts. The reversal of elution order may be realized by two procedures: changing a single selector, i.e., cyclodextrin on cholic acid sodium salt or vice versa, and by changing the proportion of selectors in the combined bile salt-cyclodextrin system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(R)-(−)-1,1′-Binaphthyl-2,2′-diyl hydrogenphosphate, ≥98%
Sigma-Aldrich
(S)-(+)-1,1′-Binaphthyl-2,2′-diyl hydrogenphosphate, 97%
Sigma-Aldrich
1,1′-Binaphthyl-2,2′-diyl hydrogenphosphate, 95%