Skip to Content
MilliporeSigma
  • Interest of novel N-alkylpyridinium-indolizine hybrids in the field of Alzheimer's disease: Synthesis, characterization and evaluation of antioxidant activity, cholinesterase inhibition, and amyloid fibrillation interference.

Interest of novel N-alkylpyridinium-indolizine hybrids in the field of Alzheimer's disease: Synthesis, characterization and evaluation of antioxidant activity, cholinesterase inhibition, and amyloid fibrillation interference.

Bioorganic chemistry (2021-10-22)
Isabelle Baussanne, Olga Firstova, Andreea Botezatu Dediu, Camille Larosa, Bianca Furdui, Ioana Ottilia Ghinea, Aline Thomas, Sabine Chierici, Rodica Dinica, Martine Demeunynck
ABSTRACT

A small library of molecules combining indolizine and N-alkyl pyridinium was synthesized and evaluated in a multi-target-directed-ligand strategy for Alzheimer's disease (AD) treatment. The new compounds were classified in three series depending on the number of methylene residues linking the two heterocycles (Ind-PyCx with x = 0, 2 or 3). The molecules were synthesized from the corresponding bis-pyridines by two-step formation of the indolizine core including mono-alkylation of pyridine and 1,3-dipolar cycloaddition with an alkylpropiolate. Their activities against AD's key-targets were evaluated in vitro: acetyl- and butyrylcholinesterase (AChE and BChE) inhibition, antioxidant properties and inhibition of amyloid fibril formation. None of the three series showed significant activities against all the targets. The Ind-PyC2 and Ind-PyC3 series are active on eeAChE and hAChE (µM IC50 values). Most of the positively charged molecules from these two series also appeared active against eqBChE, however they lost their activity on hBChE. Comparative molecular modeling of 13 and 15 docked in hAChE and hBChE highlighted the importance of the substituent (p-methoxybenzoyl or methyloxycarbonyl, respectively) located on the indolizine C-3 for the binding. The larger molecule 13 fits more tightly at the active site of the two enzymes than 15 that shows a larger degree of freedom. The Ind-PyC2 and Ind-PyC3 hybrids displayed some antioxidant activity when tested at 750 µg/mL (up to 95% inhibition of DPPH radical scavenging for 10). In both series, most hybrids were also able to interact with amyloid fibers, even if the inhibitory effect was observed at a high 100 µM concentration. The Ind-PyC0 molecules stand out completely due to their spectroscopic properties which prevent their evaluation by Ellman's and ThT assays. However, these molecules showed interesting features in the presence of preformed fibers. In particular, the strong increase in fluorescence of 3 in the presence of amyloid fibers is very promising for its use as a fibrillation fluorescent reporter dye.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Butyrylcholinesterase from equine serum, lyophilized powder, ≥900 units/mg protein
Sigma-Aldrich
Butyrylcholinesterase human, vial of ≥4 units
Sigma-Aldrich
Acetylcholinesterase human, recombinant, expressed in HEK 293 cells, lyophilized powder, ≥1,000 units/mg protein (Lowry)
Sigma-Aldrich
Acetylcholinesterase from Electrophorus electricus (electric eel), Type V-S, lyophilized powder, ≥1,000 units/mg protein